

Faculty of Science

Studies on Bioremediation of Toxic Heavy Metals in Agricultural Soil Ecosystem

Thesis Submitted for the Ph. D. degree of science "Microbiology"

By
Doaa Ali Elsayed Ismael
M.Sc. (2013) in Microbiology

Department of Microbiology
Faculty of Science
Ain Shams University
2019

Faculty of Science

Studies on Bioremediation of Toxic Heavy Metals in Agricultural Soil Ecosystem

Thesis Submitted for Ph.D. degree in Microbiology

By

Doaa Ali Elsayed Ismael

B.Sc. in Microbiology (2007) M.Sc. in Microbiology (2013)

Under the supervision of

Prof. Mohamed Khaled Ibrahim

Professor of Bacteriology, Faculty of Science - Ain Shams University

Prof. Essam Mohamed Abed-El-Aziz Hob allah

Professor of Environmental Microbiology, National Research Centre

Prof. Mohamed Saber Mohamed

Emirates Professor of Agricultural Microbiology, National Research Centre

Dr. Einas Hamed El- Shatoury

Assistant Prof. of Microbiology, Faculty of Science- Ain Shams University

Department of Microbiology
Faculty of Science
Ain Shams University
(2019)

Faculty of Science

Thesis Submitted for Ph. D degree in Microbiology

Name: Doaa Ali Elsayed

Title: Studies on Bioremediation of Toxic Heavy Metals in

Agricultural Soil Ecosystem

Supervisors:

Approval

Prof. Mohamed Khaled Ibrahim

Professor of Bacteriology- Faculty of Science - Ain Shams University

Prof. Mohamed Saber Mohamed

Emeritus Professor of Agricultural Microbiology-National Research Centre

Prof. Essam Mohamed Abed-El-Aziz Hob Allah

Professor of Environmental Microbiology - National Research Centre

Dr. Einas Hamed El-Shatoury

Associate Prof. of Microbiology - Faculty of Science - Ain Shams University **Examination Committee:**

Prof. Mohamed Khaled Ibrahim

Professor of Bacteriology- Faculty of Science - Ain Shams University

Prof. Mohamed Saber Mohamed

Emeritus Professor of Agricultural Microbiology-National Research Centre

Prof. Tahany Mohamed Ali Abed-el Rahman

Emeritus Professor of microbiology-Faculty of Science-Cairo university

Prof. Hoda Hamed El-hindawi

Emeritus Professor of microbiology–Faculty of Science– Helwan university

Declaration

This thesis has not previously been submitted for any other universities.

Doaa Ali ELsayed Ismael

Acknowledgement

First and above all I wish to express my deepest gratitude and thanks to Allah for helping me achieve any work in my life.

Grateful thanks go to **Prof. Mohamed Khaled Ibrahim** Professor of Bacteriology, Microbiology Department, Faculty of Science, Ain Shams University for his supervision, careful guidance, cooperation and encouragement throughout this work.

I wish to express my great appreciations to **Prof. Mohamed Saber** emeritus research professor of Microbiology, Agricultural Microbiology Department, National Research Centre for suggesting the research problem, supervising the work as well as for his constructive criticism, valuable discussions and support which helped me to bring this work to its best shape.

Grateful thanks go to **Prof. Essam Hob-Allah** Professor of Environmental Microbiology, Agricultural Microbiology Department, National Research Centre for his supervision, constructive criticism and valuable discussions. Sincere appreciations for **Dr. Einas Hamed El-Shatoury** associate professor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University for her supervision of this thesis. Appreciative thanks also go to **Prof. Dr. Alaa Zaghloul** emeritus research professor of soil science, Soils and Water Use Department, National Research Centre for his great effort and valuable advice. My sincere thanks and appreciations go to **Dr. Omaima Sharaf**, Researcher of Microbiology, Agricultural Microbiology Department, National Research Centre for her support and help.

I would like to express my deepest thanks and gratitude to my late greateful and lovely **Father** who drew my steps in life and for his support to get my Ph.D.

LiST of CONTENTS

	Page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1.Heavy Metals and Soil Ecosystem	4
2.1.1.Arsenic (As)	4
2.1.2. Lead (Pb)	5
2.1.3. Zinc (Zn)	6
2.1.4. Cadmium (Cd)	6
2.1.5.Copper (Cu)	7
2.1.6.Nickel (Ni)	8
2.1.7. Chromium (Cr)	9
2.2-Remediation of heavy metals	10
2.2.1-Bioremediation of heavy metals	10
2.2.1.1- Microbial remediation of heavy metals	10
2.2.1.2 Mechanisms of Phytoremediation of heavy metal	s 20
2.2.1.2.1. Phyto-extraction	20
2.2.1.2.2. Phyto-stabilization	23
2.2.1.2.3. Phyto-volatilization	24
2.2.1.3. Designer plant approach	25
2.2.1.4 .Rhizosphere engineering	26
2.2.1.5. Plant assisted microbe's bioremediation	27
2.2.2. Chemical remediation of heavy metals	29
2.2.2.1.Rock phosphate	30
2.2.2.Clay minerals	31
2.2.2.3. Organic matter	32
2.3. Effect of heavy metals on soil enzymes activities	33
3. Material and Methods	36
3.1.Sampling	36
3.2. Experimental	37
3.2.1. Greenhouse experiment	37
3.2.2. Field experiment	38
3.3 Materials	40
3.3.1. Compost	
3.3.2. Clay minerals	40
3.4 Methods	40
3.4.1Microbiological analyses	40
3.4.1.1. Microorganisms	40

3.4.1.2. Enumeration of microorganisms	40
3.4.1.3 Growth media	41
3.4.2 Assay of different enzymatic activities in different soil	43
samples	
3.4.2.1. Dehydrogenase activity	43
3.4.2.2. Urease activity	44
3.4.2.3. Alkaline Phosphatase activity	44
3.4.3. Molecular identification of tested microorganisms	45
3.4.4. Chemical analyses	50
3.4.5. Fractionation of Heavy metals	51
3.5.Assessment of heavy metals contamination	53
3.6 Statistical analysis	54
4.RESULTS	55
4.1. Biological characterization	55
4.1.1. Molecular identification of tested microbial isolates	55
4.1.2. Effect of heavy metals on the major soil biomass	58
4.1.3. Enzymatic activities in different investigated soil	59
ecosystems	5)
4.2. Chemical characterization	61
4.2.1. Heavy metals status in different studied low quality	61
water	01
4.2.2. Chemical and physical characteristics of different	62
studied soil ecosystems	02
4.2.3. Effect of irrigation with low quality water on heavy	63
metal accumulation in soil ecosystem	0.5
mount decumentation in son cossystem	
4.2.4. Distribution of different forms of heavy metals in the	64
different tested soil ecosystems	
425 4 6 1 6 6 1 4 (7) 1	70
4.2.5. Assessment of index of Geo-accumulation (Igeo) and	72
contamination level of tested samples	74
4.3. Bioremediation of soil contaminated with heavy metals in	/ (
pot experiment	74
4.3.1. Effect of tested treatments on the dehydrogenase	76
activity	
4.3.2. Evaluation the effect of tested treatments on the total	78
concentration of studied heavy metals in contaminated soil	, .
ecosystem in a greenhouse experiment	
trong strain a Broamtoase experiment	

4.3.3.Effect of the tested treatments on the available concentration of heavy metals in contaminated soil ecosystem	85
4.3.4.Effect of the tested managements on heavy metals uptake in radish	90
4.3. 5. Changes in soil pH associated with tested amendments 4.3. 6. Changes in radish growth associated with the tested amendments	96 98
4.4. Bioremediation of soil contaminated with heavy metals in	101
Field experiment 4.4.1 Effect of different tested treatments on dehydrogenase activity	102
4.4.2. Effect of tested treatments on total heavy metals	104
concentration in studied soil ecosystem 4.4.3. Effect of tested treatments on available heavy metals concentration in soil ecosystem in field experiment	109
4.4.4. Effect of tested treatments on heavy metals uptake in radish in field experiment	114
4.4.5. Changes in soil pH associated with the tested treatments in field experiment	120
4.4.6. Effect of different tested treatments on total fresh biomass of radish	121
5. DISCUSSION	123
6. SUMMARY 8. REFRENCES	145 153
71. IN 1940 IN 1941 N. 1947	

LIST of TABLES

		Page
Table (1)	16S rRNA and ITS primers for studied isolates	47
Table (2)	Preparation of PCR Master Mix	48
Table (3)	Cycling conditions of the primers during cPCR	49
Table (4)	Categeroes of geo-accumulation index according to Muller (1981)	54
Table (5)	Quantitative analysis of bacteria, Actinomycetes and fungi	59
Table (6)	Enzymatic activities in different tested soil ecosystems	60
Table (7)	Total concentrations of some heavy metals in irrigation water at the different studied drains	61
Table (8)	Chemical and physical characteristics of different studied soil ecosystems	62
Table (9)	Effect of irrigation with low quality water on heavy metal accumulation in different soil ecosystems	63
Table (10)	Zn distribution in different soil fractions in tested soils	65
Table (11)	Cu distribution in different soil fractions in tested soils	66
Table (12)	Ni distribution in different soil fractions in tested soils	67
Table (13)	Cd distribution in different soil fractions in tested soils	68
Table (14)	Cr distribution in different soil fractions in tested soils	69
	Igeo values and levels of pollution in different soil ecosystems	73
Table (16)	Evaluation the effect of tested treatments on the total concentration of tested heavy metals in greenhouse	82
Table (17)	Effect of tested materials applied on available	86

Table (18)	concentration of PTEs in remediated soils Effect of the tested remediative managements on heavy metals uptake in radish	93
Table (19)	Effect of different treatments on soil pH and total radish biomass	97
Table (20)	Effect of remediative treatments on Total heavy metals concentration in soil ecosystem in field experiment	108
Table (21)	Effect of tested treatments on available heavy metals concentration in soil ecosystem in field experiment	114
Table (22)	Effect of tested treatments on heavy metals uptke in radish hyper accumulator under field experiment	116

LIST of FIGURES

		Page
Figure (1)	Photo of agarose gel electrophoraises of studied	56
Figure (2)	isolates 16S ribosomal RNA gene Phylogenetic tree of the identified <i>Pseudomonas aeruginosa</i> isolate	57
Figure (3)	16S ribosomal RNA gene Phylogenetic tree of the identified <i>Enterobacter cloacae</i> isolate	57
Figure (4)	ITS ribosomal RNA gene Phylogenetic tree of the identified Saccharomyces cerevisiae isolate	58
Figure (5)	Distribution of Zn in different soil fractions in the tested soil ecosystem	71
Figure (6)	Distribution of Cu in different soil fractions in the tested soil ecosystem	71
Figure (7)	Distribution of Ni in different soil fractions in the tested soil ecosystem	71
Figure (8)	Distribution of Cd in different soil fractions in the tested soil ecosystem	71
Figure (9)	Distribution of Cr in different soil fractions in the tested soil ecosystem	71
Figure (10)	Effect of tested treatments on dehydrogenase activity	78
Figure (11)	Effect of tested treatments on the total concentrations of Zn in soil greenhouse experiment	83
Figure (12)	Effect of tested treatments on the total concentration of Cu in soil greenhouse experiment	83
Figure (13)	Effect of tested treatments on the total concentration of Ni in greenhouse experiment	84
Figure (14)	Effect of tested treatments on the total concentration of Cd in greenhouse experiment	84
Figure (15)	Effect of tested treatments on the total concentration of Cr in greenhouse experiment	85
Figure (16)	Effect of tested treatments on the available concentration Zn in greenhouse experiment	88
Figure (17)	Effect of tested treatments on the available concentration of Cu in greenhouse experiment	88
Figure (18)	Effect of tested treatments on the available concentration of Ni in greenhouse experiment	89

Figure (19)	Effect of tested treatments on the available concentration of Cd in greenhouse experiment	89
Figure (20)	Effect of tested treatments on the available	90
Figure (21)	concentration of Cr in greenhouse experiment Effect of the tested managements on Zn uptake in radish	94
Figure(22)	Effect of the tested managements on Cu uptake in radish	94
Figure (23)	Effect of the tested managements on Ni uptake in radish	95
Figure (24)	Effect of the tested managements on Cd uptake in radish	95
Figure (25)	Effect of the tested managements on Cr uptake in radish	96
Figure (26)	Changes in soil pH associated with tested amendments	98
Figure (27)	Changes in radish growth associated with the tested amendments	99
Figure (28)	Effect of different tested treatments on dehydrogenase activity	103
Figure (29)	Effect of tested treatments on Zn concentration in the tested soil ecosystem in field experiment	106
Figure (30)	Effect of tested treatments on Cu concentration in the tested soil ecosystem in field experiment	106
Figure (31)	Effect of tested treatments on Ni concentration in the tested soil ecosystem in field experiment	107
Figure (32)	Effect of tested treatments on Cd concentration in the tested soil ecosystem in field experiment	107
Figure (33)	Effect of tested treatments on Cr concentration in the tested soil ecosystem in field experiment	108
Figure (34)	Effect of tested treatments on available Zn concentration in the tested soil ecosystem in field	111
Figure (35)	experiment Effect of tested treatments on available Cu concentration in the tested soil ecosystem in field	112
Figure (36)	experiment Effect of tested treatments on available Ni concentration in the tested soil ecosystem in field experiment	112

Figure (37)	Effect of tested treatments on available Cd	113
	concentration in the tested soil ecosystem in field	
	experiment	
Figure (38)	Effect of tested treatments on available Cr	113
	concentration in the tested soil ecosystem in field	
	experiment	
Figure (39)	Effect of the tested managements on Zn uptake in radish	118
	in field experiment	
Figure (40)	Effect of the tested managements on Cu uptake in	118
	radish in field experiment	
Figure (41)	Effect of the tested managements on Ni uptake in	119
	radish in field experiment	
Figure (42)		119
	radish in field experiment	
Figure (43)	e i	120
	radish in field experiment	
Figure (44)	•	121
	treatments in field experiment	
Figure (45)		122
	biomass of radish	

LIST OF ABBREVIATIONS

AM Arbuscular mycorrhizae

DNA Deoxy Ribo Nucleic Acid

DTPA Diethylen Triamine Penta Acetic Acid

EC Electrical conductivity

FAO Food and Agriculture Organization

HMs Heavy metals

ITS International Transcribed Spacer

KB Kaolinite and Bentonite

μg Micro- gram

MCC Mixed culture consortium

PCR Polymerase Chain Reaction

P.D.B phosphate dissolving bacteria

PGPB Plant growth promoting bacteria

PGPY Plant growth promoting yeast

PTEs Potential toxic elements

ppm Part per million

RP Rock phosphate

rRNA Ribosomal Ribo Nucleic Acid

TBE Tris borate- EDTA

TPF Tri-phenyle formazan

WHO World Health Organization