

Surgical Ablation for Atrial Fibrilation Techniques and Outcomes

Thesis

Submitted For Partial Fulfillment of MD Degree in Cardiothoracic surgery

By

Mohamed Tarek Mounier ELSayegh

(Masters in Cardiothoracic surgery, Ain Shams University)

Under supervision of

Prof. Dr. Ahmed Bahig El Kerdany

Professor of Cardiothoracic Sugary Faculty of Medicine – Ain Shams University

Prof. Dr. Ahmed Samy Taha

Professor of Cardiothoracic Sugary Faculty of Medicine – Ain Shams University

Prof. Dr. Ayman Mahmoud Ammar

Assistant Professor of Cardiothoracic Sugary Faculty of Medicine – Ain Shams University

Prof. Dr. Mohamed Ali El Ghannam

Assistant Professor of Cardiothoracic Sugary Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2018

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Ahmed Bahig El Kerdany,** Professor of Cardiothoracic Sugary Faculty of Medicine – Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am greatly honored to express my sincere appreciation to **Prof. Dr. Ahmed Samy Taha,** Professor of Cardiothoracic Sugary Faculty of Medicine – Ain Shams University, for his continuous support, help and generous advice throughout this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Ayman Mahmoud Ammar,**Assistant Professor of Cardiothoracic Sugary Faculty of Medicine – Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Prof. Dr. Mohamed Ali El Ghannam**, Assistant Professor of Cardiothoracic Sugary Faculty of Medicine – Ain Shams University, for his great help, active participation and guidance.

Mohamed Earek Mounier EL Sayegh

Dedication

Words can never express my sincere thanks to My Family and My Loving Wife for their generous emotional support and continuous encouragement, which brought the best out of me. I owe them all every achievement throughout my life.

I would like to express my everlasting gratitude to all My Professors, Colleagues and Friends, so many of them influenced, encouraged and inspired me throughout the years. I wish them the best of all.

I would like also to thank the **Patients** who agreed willingly to be part of my study and without them; I would not have been able to accomplish this work.

List of Contents

Title	Page No.
List of Tables	6
List of Figures	7
List of Abbreviations	12
Introduction	1
Aim of the Work	21
Review of Literature	
Anatomy of the Conduction System	22
• Etiology	37
Electrophysiology of Cardiac Conduction	42
Pathogenesis of Atrial Fibrillation	71
Epidemiology	90
Prognosis	92
• Complications	94
Evaluation	96
Management of Atrial Fibrillation	108
 Medical Treatment and Electrical Cardioversic 	n111
Patients and Methods	176
Results	185
Discussion	
Summary	213
Conclusion	216
References	219
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1): Table (2):	Types of atrial fibrillation Standard tests used to evaluate of function and identify common common.	eardiac norbid
Table (3):	conditions	lations 113
Table (4):	Common Medication Dosages for Control of AF.	
Table (5):	Vaughan Williams classification	126
Table (6):	for the surgical ablation of AF	152
Table (7):	Demographic data and risk factors studied cases.	
Table (8): Table (9):	Outcome of the studied cases immedafter surgery, 3 months after surgery months after surgery	and 6 188 nd AF d risk
Table (10):	Comparison between sinus group ar group regarding echo parameters	nd AF
Table (11):	Comparison between sinus group ar group regarding other surgeries done studied cases.	nd AF to the
Table (12):	Comparison between sinus group ar group regarding intra-operative details.	nd AF
Table (13):	Correlation of LAD with the other s parameters.	tudied
Table (14):	Relation of LAD with risk factors, surgeries and NYHA classification.	other

List of Figures

Fig. No.	Title Pag	e No.
Fig. (1-A):	Incisions and Suturing for the original Cox-Maz Procedure	
Fig. (1-B):	Unipolar and bipolar radiofrequency ablation probes	n
Fig. (2-A):	Anatomy of the SA Node	22
Fig. (2-B):	Parasympathetic and sympathetic innervation of the heart: anatomy. Efferent fiber (vagus) comprises A beta, A-delta, and unmyelinated C fibers	
Fig. (2-C):	Illustration of the cardiac conduction system	
Fig. (2-D):	Anatomy of the AV Node	
Fig. (2-E):	Illustration of the conduction system with moderator band	h
Fig. (3):	Electrical activity in the myocardium	43
Fig. (4):	Phases of a typical atrial and ventricular Al and underlying currents	
Fig. (5):	The voltage gated fast sodium channel (IN: Panel A	
Fig. (6):	The voltage gated L-type calcium channel	53
Fig. (7):	The transient outward K+ channel (Ito Panel A	
Fig. (8):	The fast and the slow components of the delayed rectifier K+ channel (IKr and IKs)	
Fig. (9):	Recording in a dog ventricular myocyte in the absence (control) and the presence of 10 µM BaCl2 (a typical IK1 channel inhibitor)	/L
Fig. (10):	The ATP sensitive potassium channel (IKATP	
Fig. (10):	Principal atrial fibrillation (AF)-maintaini	
1 1g. (11).	mechanisms	_
Fig. (12):	Mechanisms of atrial fibrillation (Alinducing ectopic firing	7)-
Fig. (13):		nd

List of Figures Cont...

Fig. No.	Title	Page No.
Fig. (14):	Abnormalities of refractoriness	79
Fig. (15):	Types of atrial fibrillation (AF)-pro- remodeling	•
Fig. (16):	Anatomic factors governing atrial fibroaccurrence	
Fig. (17):	Dynamic interactions between atria ventricular function during atrial fibr (AF)	al and rillation
Fig. (18):	Mechanisms underlying atrial fibrillation related thromboembolism	on (AF)-
Fig. (19):	Electrocardiogram showing atrial fibrilla	tion104
Fig. (20):	Initial steps involve mobilizing both ve and separating the left atrium fro pericardial reflection	om the
Fig. (21):	The dotted line shows the next incision the posterior left atrium toward the inferior pulmonary vein	n along he left
Fig. (22):	The incision is extended through the poatrial free wall and ends at the area a to the left inferior pulmonary vein	osterior djacent
Fig. (23):	A suture is placed through the inferior of the left atriotomy 1 to 2 centimeter from the apex of the divided tissue	portion s away
Fig. (24):	The pulmonary vein encircling inci- completed by dividing the dome of t atrium, excising the left atrial appenda connecting this incision to the inferior adjacent to the left inferior pulmonary ve	sion is the left ge, and incision
Fig. (25):	The previously placed suture under ter now used to close the superior portion left atriotomy and the dome of the left a	nsion is n of the

List of Figures Cont...

Fig. No.	Title	Page No.
Fig. (26):	The dome of the left atrium is closed to a lunderneath the superior vena cava, and suture is secured under tension	then the
Fig. (27):	A full-thickness incision through the endocardium is then made from the portion of the atriotomy down to the	e atrial inferior mitral
Fig. (28):	The incision that extended to the mitra annulus is closed with 3-0 polypr sutures, and this is connected to the	opylene inferior
Fig. (29):	After closure of the encircling incisi anticipated incision in the right atrium right atrial portion of the Maze process.	for the
Fig. (30):	atrioventricular (AV) groove down to lateral right atrium just above the p	rom the the far previous
Fig. (31):	incision in the interatrial groove (top left) After the septum is closed, the suture is on tension, air is evacuated from the ac left ventricle, and the aortic cross-cl removed	s placed orta and
Fig. (32):	Both the superior right atriotomy and right atriotomy are extended mediall the incisions reach the tricuspid annulus	inferior ly until valve
Fig. (33):	A 3-mm cryolesion is placed at the tryalve annulus at -60°C for 1 minute	ricuspid
Fig. (34):	The 3-mm cryoprobe is again used to cryolesions at -60°C for 1 minute tricuspid annulus at 2 locations	o place at the

List of Figures Cont...

Fig. No.	Title	Page No.
Fig. (35):	The lateral right atriotomy is closed, the remainder of the right atrial incisions	
Fig. (36):	The inferior right atriotomy is closed s	tarting
	at the tricuspid valve annulus and ext to the lateral free wall of the right atriu	•
Fig. (37):	Finally, the superior right atriotomy is beginning at the tricuspid valve annul	closed us and
Fig. (90).	extending to the right atrial free wall The completed Maze procedure is shown	
Fig. (38): Fig. (39):	Medtronic radiofrequency generator	
Fig. (59):	68000	
Fig. (40):	Monopolar SICTRA Medtronic	probe
	(Cardioblate pen)	
Fig. (41):	Diagram of the maze lines performed left atrium	
Fig. (42):	Sex distribution among the studied case	
Fig. (43):	Risk factors among the studied cases	
Fig. (44):	NYHA classification among the studied	
Fig. (45):	Outcome of the studied cases one wee	
	surgery, 3 months after surgery and 6 i	months
	after surgery	188
Fig. (46):	Age.	190
Fig. (47):	Sex.	190
Fig. (48):	Path	191
Fig. (49):	Duration.	
Fig. (50):	Comparison between sinus group as	
	group regarding DM, HTN and smoking	
Fig. (51):	Ejection fraction.	194
Fig (52).	$I.\Delta D$	19/

Fig. (53):	Comparison between sinus group and AF group regarding other surgeries done to the studied cases. **List of Figures Cont**	196
Fig. No.	Title Page N	V o.
Fig. (54):	Comparison between sinus group and AF group regarding types of other surgeries done	
	to the studied cases.	. 196

List of Abbreviations

Full term Abb. AADs..... Antiarrhythmic drugs ABCs Airway, breathing, and circulation ACC..... American College of Cardiology AF Atrial fibrillation AFFIRM...... Atrial Fibrillation Follow-up Investigation of Rhythm Management AHA American Heart Association AP.....Action potentials APD..... AP duration ARIC Atherosclerosis Risk in Communities AV Atrioventricular BNP B-type natriuretic peptide cAF......Chronic AF cAMP Cyclic adenosine monophosphate CBC......Complete blood count CHF.....Congestive heart failure COR Classification of Recommendation CV Conduction velocity DAD Delayed after depolarization DADs..... Delayed afterdepolarizations DC Direct current ECG Electrocardiogram ER Extended release HVA High voltage-activated IKATP ATP sensitive potassium current **INCX** INR International normalized ratio IV Intravenous

List of Abbreviations Cont...

Full term Abb. IVC..... Inferior vena cava LA Left atrium LOE..... Level of Evidence LOM..... Ligament of Marshall LVA..... Low voltage-activated LVH Left ventricular hypertrophy N/A..... Not applicable NaV...... Voltage-gated Na+ NOS Nitric oxide synthase PVI......Pulmonary veins PVs.....Pulmonary veins QD..... Once daily QID 4 times a day RF Radiofrequency RFCA Radiofrequency catheter ablation RP Refractory period RVR..... Rapid ventricular response RVR......Rapid ventricular response RyRs.....ryanodine receptors SA..... Sinoatrial SR..... Sinus rhythm TAT.....Thrombin/antithrombin complex TF..... Tissue factor TFPI.....Tissue factor pathway inhibitor TGF- β 1.....Transforming growth factor- β 1 TID..... 3 times a day TM.....Thrombomodulin TNFα.....Tumor necrosis factor-α

List of Abbreviations Cont...

Abb.	Full term
tPA-Ag	Tissue-type plasminogen activator-antigen
tPA-PAI	Tissue-type plasminogen activator/plasminogen activator inhibitor
TTE	Transthoracic echocardiography
TTX	Toxin tetrodotoxin
VEGF	Vascular endothelial growth factor
WL	Wavelength

INTRODUCTION

Atrial fibrillation is a supraventricular arrhythmia. It is defined as rapid, uncoordinated atrial activity with a rapid, irregular ventricular response (Rosenthal et al., 2010).

Atrial fibrillation is the most common arrhythmia. It is a significant cause of morbidity such as stroke, thromboembolisms, and heart failure.

Far from benign, AF can lead to stroke, tachycardiainduced cardiomyopathy, and congestive heart failure. AF accounts for about 15% of all strokes that occur each year in the United States (Hylek et al., 2001).

There are medical conditions that are clearly the cause of some cases of atrial fibrillation, but often times the reason why atrial fibrillation happens is not known. Risk factors have been identified that increase the chances of developing atrial fibrillation. However, atrial fibrillation can also occur in healthy individuals when these risk factors are absent (Rosenthal et al., 2010).

Atrial fibrillation (AF) is the most common cardiac rhythm disorder and it affects an estimated 2.3 million adults in the United States, the majority of whom are over the age of 65 years (Feinberg et al., 1995).