Evaluation of Calcaneal Fractures by Multi Detector CT and Its Significant Effect on the Surgical Management Planning

Thesis

Submitted for Partial Fulfillment of the MD Degree in Radio-Diagnosis

By

Doaa Sobhy Aneis

Master Degree of Radiodiagnosis Faculty of Medicine - Ain Shams University

Under Supervision of

Dr. Alia Abdallah El Fiky

Professor of Radio-Diagnosis
Faculty of Medicine- Ain Shams University

Dr. Remon Zaher Elia

Assistant Professor of Radio-Diagnosis Faculty of Medicine- Ain Shams University

Dr. Amir Louis Louka

Lecturer of Radio-Diagnosis Faculty of Medicine- Ain Shams University

Faculty of Medicine
Ain-Shams University
2018

سورة البقرة الآية: ٣٢

Acknowledgment

Firstly, I thank Allah for granting me the power to accomplish this work.

I would like to express my deep thanks and profound gratitude and sincere to Prof. Dr. Alia Abdallah & Fiky, Professor of Radio-Diagnosis, Faculty of Medicine, Ain Shams University.

Special thank to **Dr. Remon Zaher Elia,** Assistant professor of RadioDiagnosis, Faculty of Medicine, Ain Shams
University and **Dr. Amir Louis Louka,**Lecturer of Radio-Diagnosis, Faculty of
Medicine, Ain Shams University for kind
supervision, illuminating discussion and
adding valuable suggestions and remarks.

Finally, special thank to My Family and My Closed Friends for their helpful efforts and encouragement during the research period.

Doaa Sobhy Aneis

List of Contents

Title	Page No.
List of Tables	5
List of Figures	6
List of Abbreviations	9
Abstract	10
Introduction	1
Aim of the Work	13
Review of Literature	
Anatomy of the Calcaneus	14
Mechanism of Injuries & Classification of Ca	
Fractures	
Clinical Presentation, Treatment and Complicat	
Radiographic Evaluation	48
Patients and Methods	60
Results	64
Case Presentation	78
Discussion	110
Summary	117
Conclusion	119
References	120
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Description of personal and clinical among all cases	
Table (2):	Description of Radiological data and n treatment among all cases	
Table (3):	Description of personal and clinical among Intraarticular cases	
Table (4):	Description of Radiological data and n treatment among Intraarticular cases.	
Table (5):	Description of personal and clinical among extra articular cases	
Table (6):	Description of Radiological data and n treatment among extra articular cases	
Table (7):	Comparison between intraarticular extra articular cases as regard person clinical data	al and
Table (8):	Comparison between intraarticular extra articular cases as regard metreatment	ode of
Table (9):	Relation between site of intraar fracture and mode of treatment	
Table (10):	Relation between site of extra ar	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Different parts of foot bone anatomy	·14
Figure (2):	Drawings illustrate the anatomy calcaneus	
Figure (3):	Lateral radiograph	18
Figure (4):	Straight axial images through the and hind foot, proximal to distal	
Figure (5):	Straight sagittal images	21
Figure (6):	Oblique coronal images throug hindfoot, posterior to anterior	
Figure (7):	Basic fracture mechanism	24
Figure (8):	Illustrate Sander's CT classification	25
Figure (9):	Sanders type IIA fracture	26
Figure (10):	Sanders type IIB fracture	27
Figure (11):	Sanders type IIC fracture	28
Figure (12):	Sanders type IIIAB fracture	29
Figure (13):	Sanders type IIIAC fracture	30
Figure (14):	Sanders type IIIBC fracture	31
Figure (15):	Sanders type IV fracture	32
Figure (16):	Type A extra articular calcaneal frac	cture34
Figure (17):	Type B extra articular calcaneal fracti	are34
Figure (18):	Type C extra articular calcaneal frac	cture34
Figure (19):	Mondor sign	36
Figure (20):	Lateral view pre-operative and later post-operative percutaneous screw fix a Sanders type IIA fracture	ation of

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (21):	Diagram and Lateral view shows Reduction and internal fixation calcaneal fracture	ion of
Figure (22):	Double density sign as demonstrated arrows head	
Figure (23):	Gissane's and Bohler's angles	50
Figure (24):	Anteroposterior view of the foot state calcaneocuboid joint	
Figure (25):	Harris radiographic view	52
Figure (26):	Photograph of the technique to Broden's view	
Figure (27):	Optimal CT reformation plane evaluation of calcaneal fractures	
Figure (28):	Axial view of the calcaneus on cotomography scan	_
Figure (29):	Coronal reconstruction show complearticular fracture	
Figure (30):	Complex intra-articular right ca	
Figure (31):	3D reconstructions of right fo individualized right calcaneum	
Figure (32):	Case 1	79
Figure (33):	Case 2	82
Figure (34):	Case 3	85
Figure (35):	Case 4	88
Figure (36):	Case 5	91

List of Figures (Cont...)

Fig. No.	Title	Page No.
	Case 6	94
_	Case 7	
Figure (39):	Case 8	100
Figure (40):	Case 9	104
Figure (41):	Case 10	107

List of Abbreviations

Full term Abb. AJAnkle Joint APCAnterior Process of the Calcaneus CCJCalcaneocuboid Joint CTComputed Tomography HSHighly Significant LpLateral Process LPTLateral Process of the Talus MDCTMulti Detector Computed Tomography MPRMulti Planar Reconstruction M-STJMiddle Facet of the Subtalar Joint NSNon Significant ORIFOpen Reduction and Internal Fixation PPosterior PlPeroneus Longus P-STJPosterior Facet of the Subtalar Joint SSignificant SCSulcus Calcanei SDStandard Deviation STSustentaculum Tali TTuberosityTNJTalonavicular Joint

Abstract

This study aimed to look at the role played by the multi detector computed tomography (MDCT) in assessing calcaneus fractures and delineate the fracture fragment which help in decision making in the management of extra and intra articular fractures of the calcaneum and pre-operative planning.

A total of 41 cases with calcaneal fracture were included. MDCT films were performed. Sanders classification for intraarticular fractures was used. The study showed that MDCT is the best method of assessing calcaneus fractures, delineate the fracture fragment and help in making the pre-operative planning.

Keywords: Computed Tomography, Calcaneal Fracture, Sanders classification, Musculoskeletal

INTRODUCTION

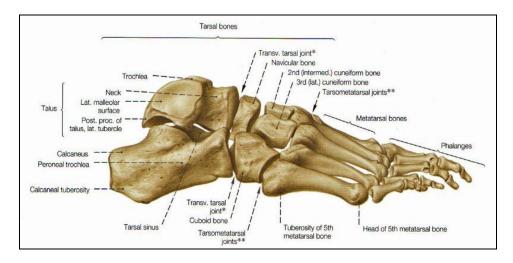
The calcaneus is the largest and most commonly fractured of the tarsal bones. Calcaneal fractures represent only about 2% of all fractures but 60% of fractures involving the tarsal bones (Clare et al., 2011).

Familiarity with the normal calcaneal anatomy is important for understanding fracture mechanisms classification schemes. Clinical presentation at the time of evaluation generally includes (a) a history of a fall from a height, and (b) certain signs that aid the physician in identifying possible calcaneal fractures (*Badillo et al.*, 2011).

Modern calcaneal fracture classification systems rely heavily on computed tomography (CT) because of its threeapproach, rather than on two-dimensional dimensional conventional radiography as was used in the past. Use of multidetector CT has allowed the development of classification systems that correlate with management (Clare et al., 2011).

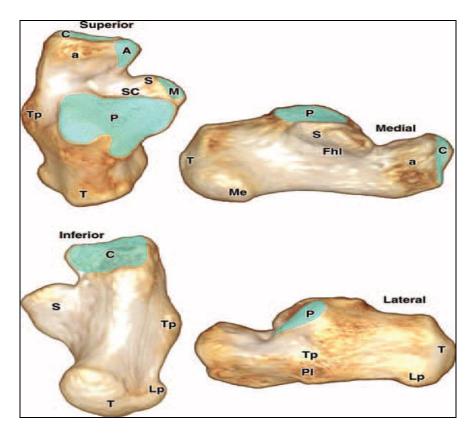
The Sanders classification system is the most commonly used system for describing intra articular fractures of the calcaneus, which account for the majority of calcaneal fractures. Extra articular fractures are classified according to a tripartite anatomic division of the calcaneal surface. Treatment can be either surgical or conservative depending on the radiologic classification of the fracture (*Heger et al.*, 2015).

Familiarity with calcaneal anatomy and fracture patterns is essential for radiologists to guide the treating physicians (Badillo et al., 2011).


AIM OF THE WORK

This study aimed to look at the role played by the multidetector computed tomography (MDCT) in assessing calcaneus fractures and delineate the fracture fragment which help in decision making in the management of extra and intra articular fractures of the calcaneum and pre-operative planning.

Chapter 1


ANATOMY OF THE CALCANEUS

The calcaneus is designed to withstand the daily stresses of weight bearing. Understanding of the anatomy of the calcaneus is essential in determining the patterns of injury and treatment goals and options (*Moore et al.*, 2007).

Figure (1): In this image, we can see different parts of foot bone anatomy like calcaneus bone, cuboid bone, fibula, tibia, navicular bone, cuneiform bone, talus bone, metatarsal bone, phalanges bone anatomy in detail.

The calcaneus has four articulatoin surfaces, three superior and one anterior (**Figure 2**). The superior surfaces, the posterior, middle, and anterior facets articulate with the talus. The posterior facet is separated from the middle and anterior facets by a groove that runs posteromedially, known as the *calcaneal sulcus*.

Figure (2): Drawings illustrate the anatomy of the calcaneus, including the anterior process of the calcaneus (a), anterior facet of the talus (A), anterior facet of the cuboid bone (C), groove for the flexor hallucis longus tendon (Fhl), lateral process (Lp), middle facet of the talus (M), medial process (Me), posterior facet (P), peroneus longus groove (Pl), sustentaculum tali (S), sulcus calcanei (SC), posterior tuberosity (T), and trochlear process (Tp) $(Badillo\ et\ al.,\ 2011)$.

The canal formed between the calcaneal sulcus and the talus is called the *sinus tarsi*. The middle calcaneal facet is supported by the sustentaculum tali and articulates with the middle facet of the talus. The anterior calcaneal facet articulates with the anterior talar facet and is supported by the calcaneal beak. The triangular anterior surface of the calcaneus articulates with the cuboid (*Gray*, 2009).