

بسم الله الرحمن الرحيم

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

STUDY OF THE EFFECT OF SCHISTOSOME SOLUBLE EGG ANTIGEN ON THE DYNAMICS OF THE HOST IMMUNE RESPONSE

BILVA

Thesis submitted By

EMAN GAMAL EL-DINE EL-AHWANY

(B.Sc., M.Sc. in Immunology)

For the degree of
Doctor of Philosophy
In Immunology

Zoology Department
Faculty of Science-Cairo University

2000

SUPERVISORS

Prof. Dr. Suher Kamal Zada

Prof. of Immunology - Zoology Department Faculty of Science - Cairo University

Prof. Dr. Hanaa Ismail Hassanein

ζ,

Head of Immunology Laboratory Theodor Bilharz Research Institute

Assist. Prof. Dr. Ragia Aly Sharmy

Assist. Prof. of Immunology - Zoology Department Faculty of Science-Cairo University

Prof. Dr. Nemat Mostafa El-Ghorab

Medical Research specialist Department of Basic Science Division NAMRU 3

Acknowledgement

"First and foremost, thanks are due to Allah, the beneficent and merciful"

- * Words are inadequate to express my deepest gratitude to **Prof. Dr.**Suher Zada, professor of Immunology, Faculty of Science, Cairo
 University, for her constant guidance, sincere encouragement,
 generous help, invaluable assistance, detailed reading of the
 manuscript, and for whom no words of praise are sufficient.
- * Whatever I say or write, I will never be able to express my deep feelings, profound gratitude and deep appreciation towards **Prof. Dr. Hanaa Hassanein**, Head of Immunology Laboratory, Theodor Bilharz Research Institute, for her creative thinking, valuable suggestions, instructive guidance, constructive criticisms and revision of every detail and discussion of all results of this thesis. Because of her brilliant scientific ideas, tremendous concern and care, this work was brought to light.
- * I wish to express my deepest gratitude to **Prof. Dr. Ragia Aly Sharmy**, assistant professor of Immunology, Faculty of Science, Cairo
 University, for her sincere encouragement, generous help and
 invaluable assistance in reading the final manuscript.
- * I am greatly honored to express my sincere gratitude to **Dr. Nemat El-Ghorab**, Medical research specialist, Department of Basic Science
 Division, NAMRU 3, for her effective supervision, continuous
 guidance, unfailing support, valuable directions and generous help in
 reading the final manuscript.
- * I would like to express my deepest gratitude to **Prof. Dr. Zeinab**Shaker, professor of Immunology and Vice president of Theodor
 Bilharz Research Institute, for her sincere encouragement, generous
 help and cooperation in offering all facilities for achieving this work.

- * I am really grateful to **Prof. Dr. Bahaa Badir,** Head of Pathology Department, El-Azhar University, for her kind help and cooperation in reading the results of immunolocalization on the computer assisted image analysis system.
- * My deep and tender thanks and no words would be sufficient to express my gratitude to **Dr. Soad Hanalla**, Lecturer of Immunology, Theodor Bilharz Research Institute, for her instructive guidance, generous help, continuous encouragement, constructive criticisms and reading and revision of every detail and discussion of all results of this thesis and for her very effective help during the immunolocalization technique.
- * I would like to express my deepest gratitude to **Dr. Manal Kamel**, Lecturer of Immunology Theodor Bilharz Research Institute, for her very effective help during the detection of cytokines and immunoglobulins isotypes for her moral support, generous help and continuous encouragement throughout the course of this thesis.
- * My deep and tender thanks are due to **Prof. Dr. Afkar Badawi**, professor of Pathology, Theodor Bilharz Research Institute, for her very effective help during the histopathological part of the thesis, a basic and essential step in the evaluation of the results.
- * I am very grateful to **Prof. Dr. Fatheia Abou El-Ela**, professor of Pathology, Cancer Institute, for helping in performing the immunolocalization technique, her valuable suggestions and continuous encouragement.
- * A special tribute is paid to Mrs. Hoda Abou Taleb for her generous effort during the statistical analysis of the data which was a basic and essential step in the evaluation of the results.

Last, but not least, a word of thanks to all staff members of Immunology department, to whom I feel much indebted for their sincere and continuous encouragement.

Finacial support: Schistosomiasis Research Project SRP, MOH / USAID/ project 1105)

CONTENTS

	Page
INTRODUCTION	1
AIM OF THE WORK	5
REVIEW OF LITERATURE	6
Chapter I	
IMMUNOREGULATORY FACTORS TO PARASITIC	6
INFECTION	
I. Antigen processing and presentation	8
II. Accessory cell molecules mediating cell adhesion and signal	9
transduction	
II.1-CD4 and CD28 co-receptors	9
II.2-Adhesion molecules	12
II.2-1-Definition	12
II.2-2-Superfamilies of the adhesion molecules	13
II.2-2-1-The immunoglobulin superfamily	13
II.2-2-2-The integrin family	16
II.2-2-3-Selectins	23
II.2-3-Cascade of binding events of adhesion molecules during	24
inflammatory response	
III. Cytokine production	32
IV. Specific antibody production	36
IV.1-B cell activation and differentiation	39
IV.2-Dynamics of immunoglobulin isotypes in parasitic	43
diseases	
IV.3-The role of cytokines in B-cell differentiation	45
IV.4-CD40 and B cell differentiation	46

	Page
Chapter II	
SCHISTOSOMIASIS	47
I. The dynamics of host immune response to S. mansoni	48
infection	
II. Stages of granuloma formation	49
1-The primary response (recruitment phase)	49
2-The secondary vigorous phase (acute phase)	53
3- The secondary modulated phase (chronic phase)	54
III. Pathological changes in schistosomiasis mansoni	57
IV. Cellular components of the granuloma	58
V. Dynamics of immunoglobulin isotypes in various stages of	60
infection	
Chapter III	
TRIALS FOR INDUCTION OF SCHISTOSOMAL	65
GRANULOMATOUS HYPORESPONSIVENESS	
Mechanisms of granulomatous hyporesponsiveness	65
I. Suppression of the host's immune responses	65
I.1-Agents of induction of immune hyporesponsiveness of the	65
host	
I.1-1-Non-specific agents	66
I.1-2-Specific schistosomal Ag hyporesponsiveness	67 71
II. Elimination of the causative parasite	71 71
II.1-Specific chemotherapy	72
II.2-Acceleration of egg destruction	12
MATERIAL AND METHOD	74
RESULTS	87
DISCUSSION	135
SUMMARY AND CONCLUSION	153
REFERENCES	157
ARABIC SUMMARY	

حر.

List of Abbreviations

Abbreviations	Definition
Ab(s)	Antibody(ies)
ACK	Ammonium chloride lysis buffer
ADCC	Antibody dependent cell-mediated cytotoxicity
Ag(s)	Antigen(s)
ALT	Alanine amino-transaminase
APC(s)	Antigen presenting cell(s)
BCR	B cell receptor
BSA	Bovine serum albumin
CD	Cluster designation
C.P.M.	Counts per minute
C_3	Complement-3
CAMS	Cellular adhesion molecules
CR3	Complement receptor type 3
CTLA-4	Cytotoxic T lymphocyte associated antigen-4
DTH	Delayed-type hypersensitivity
EC	Endothelial cells
ELISA	Enzyme-linked immunosorbent assay
FcR	Crystallizable fragment (of immunoglobulin)
g	Gravity force
gm	Gram
G.M.	Granuloma macrophage
GM-CSF	Granulocyte macrophage colony stimulating factor
h	Hour
H&E	Hematoxylin and eosin
HCl	Hydrochloric acid
³ H-TdR	³ H-thymidine
i.p.	Intraperitoneal
i.v.	Intravenous
ICAM-1	Intercellular adhesion molecule-1
IFN-γ	Interferon gamma
iC ₃ b	C ₃ fragment

Ab	brevi	atio	ns

Definition

Ig(s)	Immunoglobulin(s)
IgSF	Immunoglobulin superfamily
IL .	Interleukin
KDa	Kilodalton
LFA-1	Leukocyte function associated antigen-1
M	Mole
mAb(s)	Monoclonal antibody (ies)
Mac-1	Macrophage adhesion molecule-1
MHC	Major histocompatibility complex
MIP	Macrophage inflammatory protein
ml	Milliliter
mM	Millimole
min	Minutes
NK	Natural killer
nm	Nanometer
OD	Optical density
OPD	Ortho-phenylene diamine dihydrochloride
P	Probability
PBS	Phosphate buffered saline
pН	Hydrogen ion concentration
PHA	Phytohemagglutinin
p.i	Post-infection
POPOP	1,4 dimethyl-2-bis-5-phenyloxazene
PPO	2,5 diphenyloxazole
r	Correlation coefficient
rpm	Rotation per minute
RPMI 1640	Rosewell Park Memorial Institute Medium-1640
S. haematobium	Schistosoma haematobium
S. japonicum	Schistosoma japonicum
S. mansoni	Schistosoma mansoni
s.c.	Subcutaneous
SBSP	Schistosome Biological Supply Program
SEA	Soluble egg antigen

Abbreviations	Definition
sICAM-1	Soluble intracellular adhesion molecule-1
sIRS	Soluble immune response suppressor
TBRI	Theodor Bilharz Research Institute
TC	Cytotoxic T cells
TCR	T cell receptor
TGF-β	Transforming growth factor-beta
Th	T helper cells
$TNF-\alpha$	Tumor necrosis factor-alpha
Tris	Tris (hydroxy methyl) amino methane
TSFs	T suppressor factors
U .	Unit
VCAM-1	Vascular cell adhesion molecule-1
VLA	Very late activation antigen
Wks	Weeks
X±SEM	Mean \pm standard error of mean
μεί	Microcurie
μg	Microgram
μΙ	Microliter
μ m	Micrometer
°C	Centigrade

Percentage

%