BIOLOGY AND CONTROL OF BROWN ROT FUNGI ON SOME STONE FRUITS

By

THAURIA MABRUOK MOHAMED ABO EL WAFA

B.Sc. Agric. Sci. (Plant Pathology), Zagazig University, 1993 M.Sc. Agric. Sci. (Plant Pathology), Ain Shams University, 2012

A Thesis Submitted in Partial Fulfillment
Of
The Requirements for the Degree of

in
Agricultural Sciences
(Plant Pathology)

Department of Plant Pathology
Faculty of Agriculture
Ain Sham University

Approval Sheet

BIOLOGY AND CONTROL OF BROWN ROT FUNGI ON SOME STONE FRUITS

By

THAURIA MABRUOK MOHAMED ABO EL WAFA

B.Sc. Agric. Sci. (Plant Pathology), Zagazig University, 1993M.Sc. Agric. Sci. (Plant Pathology), Ain Shams University, 2012

This thesis for PhD. degree has been approved by:
Dr. Mohamed Mohamed Baiomy Ammar
Prof. Emeritus of Plant Pathology, Faculty of Agriculture, Menofia
University.
Dr. Soad Mohamed Abd -Allah
Prof. Emeritus of Plant Pathology, Faculty of Agriculture, Ain Sham
University.
Dr. Medhat Kamel Ali l-Sayed
Prof. Emeritus of Plant Pathology, Faculty of Agriculture, Ain Sham
University.
Dr. Ahmed Ahmed Mosa
Prof. Emeritus of Plant Pathology, Faculty of Agriculture, Ain Sham
University.

Date of Examination: 24 / 12/2018

BIOLOGY AND CONTROL OF BROWN ROT FUNGI ON SOME STONE FRUITS

By

THAURIA MABRUOK MOHAMED ABO EL WAFA

B.Sc. Agric. Sci. (Plant Pathology), Zagazig University, 1993M.Sc. Agric. Sci. (Plant Pathology), Ain Shams University, 2012

Under the supervision of:

Dr. Ahmed Ahmed Mosa

Prof. Emeritus of Plant Pathology, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Medhat Kamel Ali El-Sayed

Prof. Emeritus of Plant Pathology, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University.

Dr. Salah EL-Sayed Youssef

Head Researches of Plant Pathology, Department of Postharvest Diseases Researches, Plant Pathology Institute, Agriculture Research Center.

CONTENTS

Pa	ıge
LIST OF TABLES	Ί
LIST OF FIGURES V	II
INTRODUCTION	1
II. REVIEW OF LITERATURE	3
1. The Diseases: Brown Rot of Stone Fruits and its Causal	
Pathogen	3
2. Identification and Characterization of <i>Monilinia</i> spp. 1	0
2.1 Cultural and Morphological Characterization 1	1
2.2. Molecular Characterization	2
3. Pathogenic variations among <i>Monilinia</i> spp. 1	.5
4. Disease Control:	6
4.1 Chemical control:	8
5	20
43. Promising Control Alternatives Agents: 2	22
4.3.1. Salt Compounds: 2	22
4.3.2. Organic Acids: 2	25
	26
III. MATERIALS AND METHODS 2	8
1. Isolation and identification of <i>Monilinia</i> species 2	28
1.1. Source of samples: 2	28
1.2. Pathogen isolation 2	28
1. 3. Identification: 2	9
1.3.1. Phenotopic and Microscopic Characteristics: 2	29
1.3.2 Molecular Identification of <i>Monilinia</i> isolates:	32
3.2.1 Fungal growth on duplex media	32
	32
	3

	Page
3.2.3. DNA quantification and gel documentation	33
3.2.4 RAPD-PCR analysis	33
3.2.5. DNA sequencing	34
3.2.5.1. Preparation of DNA	34
3.2.5.2 ITS-PCR conditions	34
3.2.5.3 Gel electrophoresis	34
3.2.5.4. PCR Product purification	34
3.2.5.5. DNA sequencing	35
3.2.5.6. Identification of isolates using BLAST	35
4. Pathogenicity test:	36
II. Control of Brown rot:	
1. Effectiveness of certain salts and acids on <i>Monilinia</i> spp., in vitro	37
1.1. Source of <i>Monilinia</i> isolates:	37
1.2. Salts and acids	37
1.3. <i>In vitro</i> experiment:	38
1.4. Preharvest spray of salts and acids, in vivo.	39
1.5. Postharvest treatments with certain salts and acids:	40
1.6Assessment of brown rot:	41
1.7 Quality assay:	41
1.7.1 Total soluble solids (TSS):	41
1.7.2. Firmness:	41
2. Sensitivity of <i>Monilinia</i> isolates to fungicides	42

	Page
2.1 In viro assay:	42
2.2. Preharvest spray of fungicides	43
2.3. Postharvest treatments with fungicides:	44
3. Biological control:	45
3.1. Source of Bioagents	45
3.2. Dual Culture Assay:	45
3.3. Preharvest treatments with Bio-agent	45
4.Effect of Essential oils (ESo):	46
4.1 <i>In vitro</i> sensitivity of <i>Monilinia</i> spp.	46
4.2. Postharvest treatments with of essential oils:	47
5. Experimental design and statistical analysis:	48
IV. RESULTS	49
Part I: - Biology of <i>Monilinia</i> spp. on Stone Fruits in Egypt	49
1.Incidence of brown rot fungi in stone fruit orchards.	49
2.Identification of fungi causing brown rot.	55
2.1.Morphological characterization of <i>Monilinia</i> spp.	55
2.2Molecular characterization of <i>Monilinia</i> spp.	59
2.2.1.Molecular diversity of <i>Monilinia</i> spp. <i>isolates</i> :	59
2.2.2Analysis of internal transcribed spacer (ITS) regions 1 and 4	72
3. Pathogenicity of <i>Monilinia</i> isolates peaches and apricot:	73
Part II:- Control of <i>Monilinia</i> spp., the causal of Brown Rot	
disease of stone Fruits:	75
1- In Vitro Assays	75
1.1. In vitro effectiveness of certain salts and acids on growth	
of three Monilina spp.	75
1.2. In vitro effectiveness of four fungicide on three Monilinia spp.	78
1.3. In vitro effectiveness of Essential oil on Monilinia laxa, M.	
fructigena and Monilinia fructicola. isolate No. 118:	83

	Page
1.4. Effect of some bio-control agents on growth on Monilinia	
laxa, M. fructigena and M. fructicola:	87
2.Control of Brown rot disease of:Peaches, in vivo	89
2.1.Control of brown rot of peaches during cold storage by	
preharvest applications with salts and acids:	89
2.2 Quality of peaches during cold storage preharvest sprayed with	
tested salts and acids:	91
2.3. Control of brown rot of peach Florda Prince cv .during cold storage	
by preharvest application with fungicides:	94
2.4. Quality of peach FlordaPrince cv .during cold storage	
preharvest sprayed with fungicides:	96
2.5. Control of brown rot of peach during cold storage, by	
preharvest application with bioagents:	00
	98
2.6. Quality of peach during cold storage, preharvest sprayed with	100
bioagents:	100
2.7. Control of brown rot of peach FlordaPrince cv . by postharvest	100
applications of salts and acids:	102
2.8. Quality of peach FlordaPrince cv . postharvest treated with	104
tested salts and acids during cold storage:	104
2.9. Control of brown rot of peach FlordaPrince cv., by postharvest	107
applications of natural oils:	106
2.10. Quality of peach FlordaPrince cv .postharvest treated with	100
natural oils during cold storage:	108
3. Control of Brown rot disease on apricot, in vivo	110
3.1 Control of brown rot during cold storage of apricot by	110
preharvest application with certain salts and acids:	110
3.2 Quality of apricot preharvest during cold storage sprayed with	110
tested salts and acids during cold storage:	112
3.3 Control of brown rot of apricot by preharvest applications with	115
fungicides:	115

	Page
3.4 Quality of apricot preharvest sprayed with fungicides	
during cold storage:	117
3.5. Control of brown rot of apricot by preharvest applications with	
bioagents:	119
3.6. Quality of apricot preharvest sprayed with bioagents during	
cold storage:	121
3.7 Control of brown rot of apricot by postharvest applications of	
salts and acids:	123
3.8 Quality of apricot postharvest treated with tested salts and	
acids during cold storage:	125
3.9 Control of brown rot of apricot, by postharvest applications of	
natural oils:	127
3.10 Quality of apricot postharvest treated with natural oils during	
cold storage:	129
DISCUSSION	132
SUMMARY	147
REFERENCES .	155
APPENDIX	173
ARABIC SUMMARY	189

LIST OF TABLES

Table No.	•	Page
1	Morphological characteristics and germ tube branching	
	distinguishing among different Monilinia and Monilinia	
	spp. (Lane, 2002), Poniatowska et al. (2013) and	
	Lichtemberg (2014).	31
2	RAPD polymorphic decamer primers	33
3	Fungicides used in this study	42
4	Frequency of occurrence of <i>Monilinia</i> spp. Causing brown	
	rot disease on different phenological stages of peaches,	
	nectarines and apricot from flowering until ripe fruit in 4	
	Governorates during seasons 2013-2014.	50
5	Total no. of isolates obtained from three stone fruit crops	
	during 2013-2014, in Egypt.	51
6	Similarity matrix, in percentage, among the analyzed	
	Monilinia spp. isolates based on RAPD band pattern	
	analysis according to Primer 1.	64
7	Similarity matrix, in percentage, among the analyzed	
	Monilinia spp. isolates based on RAPD band pattern	
	analysis according to Primer 2.	66
8	Gene sequence with universal primer	67
9	Isolates analyzed by PCR amplification of rDNA	68
10	Sequences of Monilinia from NCBI GeneBank used for	
	construction of phylogenetic tree and GeneBank	
	Accession numbers.	69
11	Pathogenicity of different isolates of Monilinia fructicola.	
	on peach cv. FlordaPrince and apricot cv. Canino .	74
12	Effect of sodium bicarbonate, calcium chloride, potassium	
	sorbate, potassium silicate, boric acid and salicylic Acid	
	on linear growth (mm) of Monilinia spp. on PDA.	77
13	Models correlating salts and acids concentrations and their	
	efficacy to inhibit the growth of Monilinia fructicola. on	

Table No.		Page
	PDA medium <i>in vitro</i> and their IC ₅₀	78
14	Effect of pyraclostrobin + boscalid formulation, iprodione,	
	Reynoutria extract and cyprodinil + fludioxonil	
	formulation on growth rate of Monilinia fructigena, M.	
	laxa and Monilinia fructicola. isolate no. 118 in vitro at	
	22°C for 7 days	80
15	Models correlating fungicide concentrations and their	
	efficacy to inhibit the growth of Monilinia spp. on PDA	
	medium, in vitro, and their IC ₅₀	82
16	Effect of thyme, camphor, cinnamon and carnation on	
	linear growth of <i>Monilinia fructicola</i> . isolates no. 118, <i>M</i> .	
	laxa and M. fructigena on PDA medium at 22°C for 7	
	days.	84
17	Models correlating plant oils concentrations and their	
	efficacy to inhibit the growth of Monilinia spp. on PDA	86
	medium, in vitro, and their IC ₅	
18	effect of four bioagents, i.e. Trichoderma harzianum (Th5),	
	Trichoderma harizanum (Th20) Bacillus cereus (BC) and	
	Bacillus amyloliquefaciens (BA), on mycelia growth of	
	three isolates of <i>Monilinia</i> spp. grown in dual PDA culture	
	plates and incubated for 7 days at 22 °C	88
19	Effect of preharvest spraying of Peach trees with certain	
	salts and acids on brown rot incidence (DI) and severity	
	(DS) of fruits, collected Qalyubia and Ismailia	
	Governorates, during Seasons 2015 and 2016, and kept	
	after harvest at 0°C and 90% RH during cold storage for	
	up to 30 days*	90
21	Effect of preharvest spraying of Peach trees with different	
	bioagents on Brown rot Incidence (DI) and severity (DS)	
	of fruits, collected Qalyoubia and Ismailia governorates,	
	during seasons 2015 and 2016, and kept after harvest at	

Table No.		Page
	0°C and 90% RH during cold storage for up to 30 days*	99
22	Effect of posth Effect of postharvest dipping of Fruits Peaches with certain salts and acids on Brown rot Disease Incidence (DI) and Diseases severity (DS) kept at 0°C cold storage and 90% RH for up to 30 days during seasons 2016.	103
23	Brown rot incidence and severity percentages on peach fruits, postharvest treated with essential oil during cold storage at 0°C and 90% RH for up to 30 days, during seasons 2015 and 2016.	107
24	Effect of preharvest spraying of Apricot trees with certain salts and acids on brown rot incidence (DI) and severity (DS) of fruits, collected Qalyubia and Ismailia Governorates, during Seasons 2015 and 2016, and kept after harvest at 0°C and 90% RH during cold storage for	
25	up to 30 days Effect of preharvest spraying of Apricot trees with different Fungicides on Brown rot incidence (DI) and severity (DS) of Fruits, collected Qalyubia and Ismailia governorates during seasons 2015 and 2016, and kept after harvest at 0°C and 90% RH during cold storage for up to 30 days	111
26	Effect of preharvest spraying of Apricots trees with different bioagents on Brown rot incidence (DI) and severity (DS) of fruits, collected Qalyoubia and Ismailia governorates during seasons 2015 and 2016, and kept after harvest at 0°C and 90% RH during cold storage for up to 30 days*	120
27	Effect of postharvest dipping of Fruits Apricot with certain salts and acids on Brown rot Disease Incidence	

Table No.		Page
	(DI) and Diseases severity (DS) kept at 0°C cold storage	
	and 90% RH for up to 30 days during seasons 2016.	124
28	Brown rot incidence and severity percentages on apricot	
	postharvest treated with essential oil during cold storage at	
	0°C and 90% RH for up to 30 days during seasons 2015	
	and 2016.	127

LIST OF FIGURES

Fig. No.		Page
1	Frequency of ocuurence of different Monilinia spp.	
	Obtained from peach, apricot and nectarine grown at	
	different ochards in four Governorates, during 2013-	
	2014, in Egypt.	53
2	Colony characteristics(A-G) and structures (H-L) of	
	Monilinia spp, isolates, from peach, apricot and nectarine	
	in Egypt, grown on PDA (10 days, 12 h light /12 h dark at	
	22 °C). (A) Sporulation (abundant); (B) Concentric rings;	
	(C) Lobed margin (upper surface); (D)Lobed margin	
	(lower surface); (E) Rosetting margin (upper surface);	
	(F)Rosetting margin (lower surface); (G) Black or brown	
	arcs; (H)Stromata; (I)Apothecia; (J) Apothecia (close-up);	
	(K)Apothecia 100x;(L)Stromata100x.	57
3	Colony morphology of four Monilinia species,	
	grown on PDA (10 days, 12 h light /12 h dark at 22	
	°C. (A): M. fructigena, isolate No112; (B): M .	
	fucticola isolate No 118; (C): M. laxa	58
4	Dendrogram of main obtained <i>Monilinia</i> spp. isolates	
	from stone fruits and twigs	61
5	DNA bands of 10 Monilinia spp. isolates from stone	
	fruits as determined using primer 1 for the	
	RAPD/PCR band pattern.	63
6	Dendrogram obtained by clustering (UPGMA	
	method) based on the band pattern obtained by the	
	RAPD PCR analysis for ten Monilinia fungal isolates	
	when using primer 1.	64
7	DNA bands of 10 <i>Monilinia</i> spp. isolates from stone	
	fruits as determined using primer 2 for the	
	RAPD/PCR band pattern.	65
8	Dendrogram obtained by clustering (UPGMA	

Fig. No.		Page
	method) based on the band pattern obtained by the	
	RAPD PCR analysis for ten Monilinia fungal isolates	
	when using primer 2.	66
9	DNA bands of 4 Monilinia isolates from stone fruits	
	as determined using primer ITS1, ITS2 for the band	
	pattern.	67
10	Sequence alignment of the ITS region of Monilinia	
	species and selected isolates. Isolates and GeneBank	
	Accession numbers	68
11	RAxML tree of the genomic region based on	
	analyses of a combined dataset of ITS sequence data.	70
12	Sequence alignment of the genome area	
	corresponding to the Monilinia fructigena (ARC5,7	
)508-bp , Monilinia fructicola (ARC1) 497pb and	
	Monilia laxa(ARC4)509 -pb ITS regon product for	
	the three <i>Monilinia fructicola</i> . and Identical	
	nucleotides are represented by stars, and absent	
	nucleotides are shown by hyphens. Spaces at	
	beginning and end of alignment are undetermined	
	sequence	71
13a	Quality of peach preharvest-sprayed ,three times,	
	with certain salts and acids at growth stages during	
	growing seasons 2015 at Qalyoubia and kept after	
	harvest at 0°C and 90% RH	92
13b	Quality of peach preharvest-sprayed, three times,	
	with certain salts and acids at growth stages During	
	Growing seasons 2016 Qalyoubia and kept after	
	harvest at 0°C and 90% RH	92

Fig. No.		Page
14a	Quality of FlordaPrince peaches preharvest-sprayed	
	three times with certain salts and acids at growth	
	stages during growing seasons2015 Ismailia kept	
	after harvest at 0°C and 90% RH	93
14b	Quality of FlordaPrince peaches preharvest-sprayed	
	three times with certain salts and acids at growth	
	stages during growing seasons2016 Ismailia kept	
	after harvest at 0°C and 90% RH	93
15	Quality of peaches preharvest-sprayed three times	
	with fungicide at growth stages during growing	
	seasons 2015 in Qalyubia and Ismailia governorates	
	and kept after harvest at 0°C and 90% RH.	97
16	Quality of peaches preharvest-sprayed three times	
	with Bioagent at growth stages during growing	
	seasons 2016 in Qalyubia ismailia and governorates	
	and kept after harvest at 0°C and 90% RH	101
17a	Quality of peaches postharvest-treated with certain salts	
	and acids and kept at 0°C cold storage and	
	95% RH for up to 30 days during season 2016.	107
17b	Quality of peaches postharvest-treated with certain salts	
	and acids and kept at 0°C cold storage and	
	95% RH for up to 30 days during season 2016.	107
18a	Quality of FlordaPrince peaches post – harvest treatments	
	with essential oil 0°C and 90% RH during cold storage	
	for up to 30 days during growing seasons 2016.	109
18b	Quality of FlordaPrince peaches post – harvest treatments	
	with essential oil 0°C and 90% RH during cold storage	
	for up to 30 days during growing seasons 2016.	109
19a	Quality of Canino apricot preharvest-sprayed three	
	times with certain salts and acids at growth stages	
	during growing seasons 2015 in Qalyubia	