

Sûrat Al-Isrû' (The Journey by Night) XVII

In the Name of Allâh the Most Gracious, the Most Merciful.

هلی And they ask you (O Muhammad الله عليه وسلم) concerning the Rûh (the Spirit); Say: "The Rûh (the Spirit) is one of the things, the knowledge of which is only with my Lord. And of knowledge, you (mankind) have been given only a little."

وَيَسْنَلُونَكَ عَنِ الرُّوجُ قُلِ الرُّوحُ مِنْ أَصْرِ رَبِّ وَمَا أُوتِيتُ مِنَ الْعِلْمِ إِلَّا فَلِيلًا ۞

Evaluation of Ultimate Capacity and Serviceability Performance of Single Piles under Axial Compressive Loading

A Thesis Submitted in Partial Fulfillment of the Requirements of the Degree of Master of Science in Structural Engineering

by Mohamed Sobhy El Sayed El Kharashy

Supervised by

Prof. Dr. Yasser M. El-Mossallamy

Professor of Geotechnical Engineering Department of Structural Engineering Faculty of Engineering - Ain Shams University

Prof. Dr. Ashraf A.S. Elashaal

Adviser of Minister for Irrigation and Drainage Infrastructures - Minister Office Ministry of Water Resources and Irrigation

APPROVAL SHEET

Name: Mohamed Sobhy El Sayed El Kharashy

Thesis: Evaluation of Ultimate Capacity and Serviceability Performance of

Single Piles under Axial Compressive LoadingDegree: Master of Science in Structural Engineering

EXAMINERS COMMITTEE

Name Signature

Prof. Dr. Fathalla Mohamed Elnahhas

Professor of Geotechnical Engineering Department of Structural Engineering Faculty of Engineering - Ain Shams University

Dr.-Ing. Khalid A.M. Abdel-Rahman

Deputy Head at Institute for Geotechnical Engineering Leibniz University of Hannover, Germany

Prof. Dr. Yasser M. El-Mossallamy

Professor of Geotechnical Engineering Department of Structural Engineering Faculty of Engineering - Ain Shams University

Prof. Dr. Ashraf A.S. Elashaal

Adviser of Minister for Irrigation and Drainage Infrastructures - Minister Office Ministry of Water Resources and Irrigation

Date:	/	/	
Date	/	/	

Name: Mohamed Sobhy El Sayed El Kharashy

Thesis: Evaluation of Ultimate Capacity and Serviceability Performance of

Single Piles under Axial Compressive Loading
Degree: Master of Science in Structural Engineering

SUPERVISORS COMMITTEE

Name	Signature
Prof. Dr. Yasser M. El-Mos Professor of Geotechnical Er Department of Structural Eng Faculty of Engineering - Ain	gineering ineering
Prof. Dr. Ashraf A.S. Elash Adviser of Minister for Irriga Infrastructures - Minister Off Ministry of Water Resources	tion and Drainage ice
Research Date://	
Postgraduate Studies :	
Authorization stamp:	This thesis is authorized at/
Faculty Board Approval	University Board Approval
//	/

Researcher Data

Name: Mohamed Sobhy EL Sayed El Kharashy

Date of birth: 30/6/1985

Place of birth: Alexandria - Egypt

Academic Degree: BSc

Field of specification: Civil Engineering

University issued the degree : Faculty of Engineering – Alexandria University

Date of issued degree: 2008

Current job : Civil Engineer

STATEMENT

This thesis is submitted as partial fulfillment of M.Sc. degree in Structural Engineering, Faculty of Engineering, Ain Shams University.

The work included in this thesis was carried out by the author during the Period from 1st Oct 2013 to 2018, and no part of it has been submitted for a degree or qualification at any other scientific entity.

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others.

Name: Mohamed Sobhy El Sayed El Kharashy
Signature:
Date:.../.../.......

ACKNOWLEDGEMENT

Firstly, I would like to express my sincere gratitude to my main supervisor **Prof. Dr.**

Yasser M. El-Mossallamy for the continuous support to my MSc study and related research,

for his patience, motivation, immense knowledge and help in gathering the valuable data

used in this research study.

I am also grateful to my thesis second supervisor Prof. Dr. Ashraf El-Ashaal. I am

extremely thankful and indebted to him for sharing expertise, and sincere and valuable

guidance and encouragement extended to me.

Finally, I must express my very profound gratitude to my parents for providing me

with unfailing support and continuous encouragement throughout my years of study and

through the process of researching and writing this thesis. This accomplishment would not

have been possible without them.

Thank you

Author

Mohamed Sobhy EL Kharashy

Cairo - 2018

Evaluation of Ultimate Capacity and Serviceability Performance of Single Piles under Axial Compressive Loading

Mohamed Sobhy El Sayed El Kharashy

Abstract

It is common practice for geotechnical engineers to evaluate pile load capacities using pile load tests. In many practical applications, the measured load-settlement curve represents only parts of pile total resistance by applying insufficient loading levels. That's from reasons why most of the conducted pile load test results cannot be used in a reliable way to estimate the pile capacity. However, these results can be helpful to verify the pile-soil stiffness parameter as a single pile through back analysis techniques in terms of further variable and effective parameters.

In the presented research, evaluation and analyses of bearing capacity for about 23 pile load tests in soils, in different countries, were carried out. Different techniques to estimate pile capacity from load-settlement measurements were conducted. Accordingly, the accuracy of the extrapolation technique using mainly the general hyperbolic method was studied. Then, the results have been compared with Egyptian Code and further International Codes. New computer application is programmed to practice the intensive calculations. Using about 94 additional pile load tests, new empirical equations are formulated to estimate the pile serviceability performance. Where, Randolph's approaches are selected to back analyze piles' load-settlement performance under working loads to estimate single pile stiffness, considering their rigidity. The results of the conducted analyses are presented and discussed in the present thesis.

Keywords:

normal soil, pile design, pile capacity extrapolation, compression pile load test, pile serviceability performance

Contents

Glo	ssary And Acro	nyms	15
	Letters: Ir	ndication	15
1.	Introduction		17
	1.1. Re	search Aims and Hypotheses	19
	1.2. Ob	jectives	19
	1.3. Ch	apters	20
2.	Presentation	and Discussion of Past References and Researches	22
	2.1. Pur	rport of key text papers	22
	2.1.1.	Design of Pile Capacity in Soils	22
	2.1.2.	Extrapolation to predict Pile Capacity	29
	2.1.3.	Pile Serviceability Performance	33
3.	New Comput	er Application, Used Data and Methodologies	49
	3.1. Int	roducing Program	49
	3.2. Pro	ogram Modes	49
	3.2.1.	Single Run Mode	49
	3.2.2.	Multi Run Mode	53
	3.3. Da	ta of Analyses	55
	3.3.1.	Pile Load Tests without instrumentation with S/D of range 55	es 0.12-4.7%

Contents 9

3.3.2.	Pile Load Tests without instrumentation with S/D of ranges 5.3-12% 55	6
3.3.3. 7.01-13.68%	Pile Load Tests instrumented with strain gauges with S/D of range 56	S
3.4. Me	thodologies of Analyses50	5
4. Results of Pile	e Extrapolation and Design72	2
4.1. An	alyses on the program results72	2
4.2. Acc	curacy of the Extrapolation Techniques	2
4.2.1.	Design of Pile Capacity	7
5. Studies on pil	e serviceability performance78	8
5.1. Est 78	imation of Pile Serviceability Performance Using Pile Load Test Result	S
5.1.1.	Formulation of Practical Equation	9
5.1.2.	Use of Equation 5.180	0
5.1.3.	Example on how to use Equation 5.1	0
5.2. De	velopment of Methodologies for Estimating Soil Elastic Modulus fron	n
Randolph Express	ions	2
5.2.1.	Estimating Soil Elastic Modulus from Pile Load Tests on Rigid Pile 82	S
	Estimating Soil Elastic Modulus from Pile Load Tests of (Long / Very Long) Piles	
5.3. Est	imation of Soil Elastic Modulus84	4
5.3.1.		

10 Contents

	5.	.3.2.	Further factors affecting the soil elastic modulus related to the load	ing
	process [1	19]	85	
	5.	.3.3.	Comparison of soil elastic modulus derived from in-situ soil standa	ard
	pentration	ı tests	and pile load tests	.86
6.	Conclusio	ons ar	nd Recommendations	.95
	6.1.	Con	clusions	.95
	6.2.	Reco	ommendations and Future Researches	.95
7.	Bibliogra	ıphy		.97
8.	Appendic	ces		.99

Contents 11

List of Figures

	Figure 1.1	. Measure	ed and exti	rapolated lo	oad-settlen	nent relatio	ns for real pile c	ase18
	Figure	2.1.	Pile	Shaft	and	Base	Capacities	(ref.
http://	environment	.uwe.ac.u	k/geocal/f	oundations	s/founbear	.htm)		23
	Figure 2.2	. Extrapo	lation to p	redict Pile	Capacity .			30
	Figure 2.3	. Chin's p	lot to extra	apolate pile	e capacity			31
	Figure 2.4	. Brinch's	plot to ex	trapolate p	ile capacit	у		32
	Figure 2.5	5. "Exact	ness" of j	pile load-s	settlement	behavior l	between an actu	ıal pile
loadin	g test and it'	s predicte	ed modelin	ıg				33
	Figure 2.6	6. Assum	ption of	concentric	cylinder	model and	l Equation of V	/ertical
Equili	brium of Soi	l Elemen	t [15]					35
	Figure 2.7	. Notation	n for analy	sis of defo	rmation a	round a rig	id pile [12]	36
	Figure 2.8	. Assume	d variation	n of soil sh	ear modul	us with dep	th [11]	39
	Figure 2.9	. Rigid pi	le system _l	[12]				40
	Figure 2.1	0. Compr	essible pil	le system [12]			41
	Figure 2.1	1. Analys	is of a sho	rt pile eler	nent for ax	cial respons	se [12]	41
	Figure 2.1	2. Rigid o	& Compre	ssible pile	head stiffn	ess (after I	Fleming et al. 20	09)46
	Figure 2.1	13. differ	rence of l	oad transf	fer behavi	or between	n rigid short pi	ile and
compr	essible long	pile						48
	Figure 3.1	. (a) & (b)) Program	Single Ru	n Mode			51
	Figure 3.2	. Program	n Multi Ru	n Mode				53
	Figure 3.3	3. Input I	Data 1: pi	ile number	r, referenc	e, location	, diameter, leng	th and
compr	essive streng	gth						57
	Figure 3.4	. Input Da	ata 2: soil	layers type	s, thicknes	sses, Ø, c _u a	and SPT	57
	Figure 3.5	. Input Da	ata 3: pile	load settle	ment point	S		58
	Figure 3.6	. Output I	Data 1: pil	e – soil pro	ofile			59
	Figure 3.7	. Output I	Data 2: LS	-shadow				60
	Figure 3.8	. Output I	Data 3: est	imated soi	l propertie	s for each 1	ayer	60

12 List of Figures

Figure 3.9. Output Data 4: designed pile capacities using Egyptian code	61
Figure 3.10. pile load test results	62
Figure 3.11. soil profile, and average in-situ SPT-results	63
Figure 3.12. Plots of trendlines for each extrapolation repetition	66
Figure 3.13. Plots of trendlines per each extrapolation repetition (Loop)	67
Figure 3.14. Plots of trendlines per each extrapolation repetition (Loop) (Coop)	Continue)
	68
Figure 3.15. Excel Input to get Es/Nav	70
Figure 3.16. Excel Output to get Es/Nav	71
Figure 4.1. Drawing plots between dimensionless fractions of "Qextpr/ Qextpr/	nax" using
the General Hyperbolic method and "S/D"	75
Figure 4.2. Drawing plots between dimensionless fractions of "Q _{extpr} / Q _{extpr}	nax" using
the General Hyperbolic method and "S/D"	76
Figure 5.1. Drawing dimensionless plot of load settlement relations	79
Figure 5.2. Stress-axial strain curve [19]	86
Figure 5.3. Plot of soil elastic modulus over standard penetration text"Es/ I	Nav" and
Cohessionless percentage along pile shaft "%"	88
Figure 5.4. Pile Case dy.rp23	90
Figure 5.5. Pile Case dy.rp1	92
Figure 5.6. Pile Case dy.rp16	94

List of Figures 13

List of Tables

Table 2.1. Relation between q _c and N30 from SPT, DIN 40142	25
Table 2.2. Pile shaft resistance for cohessive soils, DIN Code 10542	26
Table 2.3. Pile shaft resistance for non-cohessive soils, DIN Code 10542	26
Table 2.4. Pile base resistance for cohessive soils, DIN Code 10542	26
Table 2.5. Pile base resistance for non-cohessive soils, DIN Code 10542	27
Table 2.6. Pile shaft resistance for cohessive soils, Egy Code	28
Table 2.7. Pile shaft resistance for non-cohessive soils, Egy Code2	28
Table 2.8. Pile base resistance for cohessive soils, Egy Code	28
Table 2.9. Pile base resistance for non-cohessive soils, Egy Code2	!9
Table 3.1. coordinates of load vs settlement graphs for total, shaft and base	se
resistances6	54
Table 3.2. intermediate coordinates of load vs settlement graphs for total, shaft are	ıd
base resistances 6	54
Table 3.3. vertical and horizontal coordinates (S and S/Q), y-intercept and slop ((a
and b) and trendline starting and ending points coordinates6	5
Table 4.1: Summary of extrapolation with repetitions for 23 pile cases (bold row	VS
highlight cases that overestimate the assumed real pile ultimate capacity)7	13
Table 4.2 Summary of pile designed capacities using all pile design codes compare	ed
amongst each other and the assumed real ultimate capacity	7
Table 5.1 assumed loading levels	31
Table 5.2 settlements corresponding to assumed loading levels	31
Table 5.3 S_{max} by solving two rows	31
Table 5.4 S_{max} & Q_{max} by solving two rows	32
Table 5.5 Typical values of E_s/N_{av} for cohessive and granular material (MPa)8	35
Table 5.6 Comparison with Typical values of E _s /N _{av} for cohesive and granula	ar
material (MPa)8	37

14 List of Tables

Glossary And Acronyms

Letters: Indication

LS: Load Settlement Curve

PLT: Pile Load Test

LL: Load Level

P = Q: Axial Load Applied on Pile Top

S: Settlement of Pile Top

 σ_v vertical stress due to axial load (P) applied to pile head

w_{s:} Settlement of pile shaft

P_{PLT}: Load Level in Pile Load Test

P_(plt, max): Maximum Load Level in Pile Load Test

W_{PLT}: Settlement at Pile Head in Pile Load Test

A_s: Area of pile shaft (m²)

A_b: Area of pile base (m²)

D: diameter of drilled shaft (mm)

SPT: Standard Penetration Test

N: no. of blows from SPT

N_{av}: number of blows from SPT (as an average along pile depth in soil)

COHLS%: Cohesionless percentage considering all thicknesses of soil layers along pile depth

COHS%: Cohesive percentage considering all thicknesses of soil layers along pile depth

CPT: Mean Cone Resistance

c_u = S_u: Undrained Cohesion or Undranied Shear Strength (MPa)

f_{cu}: Concrete Compressive Strength

P_a: atmospheric pressure (= 0.101 MPa = 101 KPa)

P_{slip}: Start of Slip Load

 $Q_{tu} = Q_u$: Total Ultimate Resistance

Q_{fu}: Ultimate Friction Capacity