



### Production of mannanase enzyme by some local fungal strains and biomass utilization for the removal of some heavy metals from aqueous solutions

#### **Thesis**

Submitted For the Degree of Doctor of Philosophy In science, In Microbiology

By

#### **Eman Ibrahim Ibrahim**

Department of Microbiology,
Faculty of Science,
Ain Shams University

2019



سورة :البقرة (٣٢)

# Before every thing

Thanks to "**ALLAH**"

For your mercy, help and continuous support to me

**Dedications** 

I wish to dedicate this work.

To

My Mother, My Father, My Brothers

And the spirit of

Pro.Dr.Zahra Karam El-Din

## Acknowledgement

First and foremost, all the praises and limitless thanks are to **ALLAH** who gave me the capability to do this work.

Initially, I turn to the spirit of **Pro. Dr. Zahra Karam El-Din** by praying with infertility and mercy. I wish she was present with us now to convey to her all the gratitude, appreciation and love for her kindness and sincerity in giving advice. Her efforts during this thesis never will be forgettable.

I wish to express my sincere thanks, deepest gratitude and appreciation to **Prof. Dr. Mohamed Abdel-Montaser Ali Abou-Zeid** Professor of Microbiology and head of Microbiology Department, Faculty of Science, Ain Shams University for supervision, and revision of the manuscript of this thesis.

Words cannot describe the extent of my deepest thanks and appreciation for **Prof. Or. Abd EL-Naby Mahmoud Saad**, Professor of Microbiology, Microbial Chemistry Department, National Research Center, Cairo, Egypt, for solving the problem, continuous guidance throughout the experimental section, valuable discussion, teaching, explaining and unlimited helps in writing and revision of the manuscript of this thesis; Finally, for his patience and kindness.

I deeply appreciate the effort of **Prof. Dr. moataza Mahmoud Saad** Professor of Microbiology, and head of Microbial Chemistry Department, National Research Center, Cairo, Egypt, for supervision, helping, unlimited supporting with continuous assistance and encouragement throughout the present study.

Sincere appreciation and thanks to **Prof. Dr. Helmy Mohamed Hassan** Professor of Microbiology, Microbial Chemistry. Dept., National Research Centre, for supervision, helping and advice throughout the present study.

I wish to express my sincere thanks, to **Dr. Nevin Ahmed Ibrahim** lecturer of Microbiology Department, Faculty of Science, Ain Shams University for supervision, and encouragement, throughout this thesis.

I also deeply appreciate the effort from **Dr. Doaa Alhadidi** Assistant Professor of Molecular Biology, Biotechnology Dept., Egyptian Atomic Energy Authority of helping and advice throughout this thesis.

I also deeply appreciate the much support and helping from **Dr.**\*\*Abeer Naser Assistant Professor of Biochemistry Department, National Research Centre.

I wish to express my great thanks for all the stuff members at the Department of Microbial Chemistry, National Research Center for their help and encouragement during the course of this study.

# List of Contents

| Title                                                  | page |
|--------------------------------------------------------|------|
| I. INTRODUCTION                                        | 1    |
| II. REVIEW OF LITERATURE                               | 9    |
| II.1 Hemicelluloses                                    | 9    |
| II.1.1 Mannan                                          | 10   |
| II.1.1.1 Structure and appearance                      | 10   |
| II.1.1.2 Mannan Depolymerization                       | 13   |
| II.2 Mannanases                                        | 16   |
| II.2.1 Sources                                         | 16   |
| II.2.2 β-mannanase Structure and Characterizations     | 18   |
| II.2.3 Mannanases production conditions and properties | 18   |
| II.2.4 Applications of β-mannanases                    | 22   |
| II.2.5 Mannooligosaccharides                           | 23   |
| II.3 Prebiotics                                        | 24   |
| II.3.1 Definition and production                       | 24   |
| II.3.2 Oligosaccharides                                | 25   |
| II.3.3 Mannooligosaccharides as a prebiotic            | 26   |
| II.3.4 Potential mechanisms of MOS action as prebiotic | 27   |
| II.4 Immobilization                                    | 28   |
| II.4.1 Cell immobilization                             | 28   |
| II.4.1.2 Carrier for cell immobilization process       | 29   |
| II.4.1.2.1 Classification of carriers                  | 30   |
| II.4.1.3 Techniques of cell immobilization             | 31   |
|                                                        |      |

| II.4.1.3.1 Entrapment in permeable matrix technique                                                                                                                                                                                                                                                                                                                                | ۷                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| II.4.1.4 Advantages and Disadvantages of Immobilized Cells 33                                                                                                                                                                                                                                                                                                                      | 3                                  |
| II.4.1.5 Applications of immobilized cells                                                                                                                                                                                                                                                                                                                                         | 1                                  |
| II.5 utilization of waste biomass for the removal of heavy metal35                                                                                                                                                                                                                                                                                                                 | 5                                  |
| II.5.1 Heavy metal                                                                                                                                                                                                                                                                                                                                                                 | 5                                  |
| II.5.2 Techniques of removing heavy metals                                                                                                                                                                                                                                                                                                                                         | 3                                  |
| II.6 Bioremediation40                                                                                                                                                                                                                                                                                                                                                              | )                                  |
| II.6.1 Mechanism of biosorption41                                                                                                                                                                                                                                                                                                                                                  | L                                  |
| II.6.2 Biosorbent41                                                                                                                                                                                                                                                                                                                                                                | L                                  |
| II.6.3 Factors involved in biosorption                                                                                                                                                                                                                                                                                                                                             | 2                                  |
| II.6.4 Biosorption Mechanisms45                                                                                                                                                                                                                                                                                                                                                    | 5                                  |
| II.6.5 Techniques of biosorpton46                                                                                                                                                                                                                                                                                                                                                  | 5                                  |
| II.6.6 Advantages of Biosorption48                                                                                                                                                                                                                                                                                                                                                 | 3                                  |
|                                                                                                                                                                                                                                                                                                                                                                                    |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                    |                                    |
| III. MATERIALS AND METHODS49                                                                                                                                                                                                                                                                                                                                                       | )                                  |
| III. MATERIALS AND METHODS                                                                                                                                                                                                                                                                                                                                                         |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                    | )                                  |
| III. 1. Materials49                                                                                                                                                                                                                                                                                                                                                                | )                                  |
| III. 1. Materials                                                                                                                                                                                                                                                                                                                                                                  | )<br>)                             |
| III. 1. Materials                                                                                                                                                                                                                                                                                                                                                                  | )<br>)                             |
| III. 1. Materials       49         III.1.1. Chemicals       49         III.1.2. Buffers       49         III.1.3. Reagents       50                                                                                                                                                                                                                                                | )<br>)<br>)<br>51                  |
| III. 1. Materials       49         III.1.1. Chemicals       49         III.1.2. Buffers       49         III.1.3. Reagents       50         III.1.4 Media       5                                                                                                                                                                                                                  | )<br>)<br>)<br>51                  |
| III. 1. Materials       49         III. 1.1. Chemicals       49         III. 1.2. Buffers       49         III. 1.3. Reagents       50         III. 1.4 Media       5         III. 2. Methods       54                                                                                                                                                                             | )<br>)<br>51<br>1                  |
| III. 1. Materials       49         III. 1.1. Chemicals       49         III. 1.2. Buffers       49         III. 1.3. Reagents       50         III. 1.4 Media       5         III. 2. Methods       54         III. 2.1. Isolation of fungi       54                                                                                                                               | )<br>)<br>51<br>1                  |
| III. 1. Materials                                                                                                                                                                                                                                                                                                                                                                  | 9<br>9<br>51<br>1<br>1             |
| III. 1. Materials       49         III. 1.1. Chemicals       49         III. 1.2. Buffers       49         III. 1.3. Reagents       50         III. 1.4 Media       5         III. 2. Methods       54         III. 2.1. Isolation of fungi       54         III. 2.2. Screening of β-mannanase producing fungal isolates       54         III. 2. 2. 1. Qualitative test       54 | 9<br>9<br>51<br>4<br><b>1</b><br>4 |

| III.2.3.2. Molecular characterization5                                  | 6         |
|-------------------------------------------------------------------------|-----------|
| III.2.4 Detection of aflatoxins in the culture filtrate of the selected | l         |
| fungal isolate (NRC3)5                                                  | 7         |
| III.2.5 Crude enzyme Preparation5                                       | 7         |
| III.2.6 Biochemical properties of crude enzyme                          | 58        |
| III 2.6.1 Determination of analytical parameter58                       | 3         |
| III.2.6.1.1 Determination of mannanase activity5                        | 8         |
| III.2.5.2 Estimation of protein content5                                | 8         |
| III.2.6.2 Factors affecting the enzyme activity5                        | 9         |
| III.2.7 Optimization of Mannanase production6                           | 0         |
| III.2.8 β-mannanase production using immobilization technique of        | f         |
| whole fungal cell6                                                      | 4         |
| III.2.8.1 Immobilization of fungal cells by different matrixes6         | 5         |
| III.2.8.2 Fermentation Process by immobilized fungal cells for          |           |
| mannanase production6                                                   | 7         |
| III.2.8.3 Optimization studies of agarose matrix for mannanase          |           |
| production by immobilized fungal cells6                                 | 9         |
| III 2.9 Purification of Mannanase7                                      | 0         |
| III 2.10 Determination of purified enzyme molecular weight by go        | el        |
| electrophoresis7                                                        | 3         |
| III.2.11 Physiochemical properties of purified β-mannanase7             | <b>74</b> |
| III.2.11.1. Estimation of protein in the purified fractions7            | 4         |
| III.2.11.2 Amino acid analysis                                          | 4         |
| III.2.11.3 Determination of purified mannanase isoelectric              |           |
| point (pI)                                                              | 75        |
| III.2.11.5 Determination of kinetic parameters, Km. and Vmax7           | 78        |

| III 2.12 Variation of hydrolysis time                                | 78         |
|----------------------------------------------------------------------|------------|
| III.2.13 Thin-layer chromatography (TLC) analysis                    | 79         |
| III.2.14 Evaluation of prebiotic potential of the MOS                | 79         |
| III.2.15 Evaluation of Aspergillus tamarii NRC3 biomass was          | ste        |
| recorded the highest $\beta$ -mannanase activity in biorem           | ediation   |
| of some heavy metal ions from aqueous solution                       | 82         |
| III.2.16 Removal of metal ions from industrial effluent              | 86         |
| III 2.17 Statistical analysis                                        | 86         |
| IV. EXPERIMENTAL RSULTS                                              | 87         |
| IV.1. Screening of β-mannanase producing fungal isolates             | 87         |
| IV.1.1.Qualitative test                                              | 87         |
| IV.1.2.Quantitative assay test                                       | 88         |
| IV.3 Identification techniques of selected fungal isolate NRC3       | <b></b> 91 |
| IV.2.1.Scanning electron microscopy                                  | 91         |
| IV. 2.2. Molecular characterization                                  | 92         |
| IV.3. Detection of aflatoxins in the culture filtrate of the select  | ed         |
| fungal isolate NRC3                                                  | 95         |
| IV.4. some properties of crude β-mannanase produced by As            | pergillus  |
| tamarii NRC3                                                         | 95         |
| IV.5 Optimization of Mannanase production by Aspergillus             |            |
| tamarii NRC3                                                         | 100        |
| IV.6 β-mannanase production by modern biotechnology meth             | od using   |
| immobilization techniques of whole fungal cells                      | 114        |
| IV.6.3 Optimization studies of agarose matrix for $\beta$ -mannanase | :          |
| production by immobilized Aspergillus tamarii NRC3                   | 117        |
| Iv.7 Purification of β-Mannanase                                     | 123        |

| IV.8 Determination of the molecular weight of purified mannanase128                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IV.9. Physicochemical properties of purified β-mannanase129                                                                                                           |
| IV.9.1 Amino acid analysis of purified β-mannanase                                                                                                                    |
| <ul><li>IV.9.2. Determination of purified β-mannanase isoelectric131 point (pI)</li><li>IV.9.3. Factors affecting the β-mannanase activity and stability132</li></ul> |
| IV.9.4 Determination of kinetic parameters                                                                                                                            |
| IV.10. Variation of hydrolysis time and determination of (DP)                                                                                                         |
| IV.13.Evaluation of Aspergillus tamarii NRC3biomass in bioremetion                                                                                                    |
| of some heavy metal ions from aqueous solution152                                                                                                                     |
| IV.13.1 Kinetic and mechanism of Cu2+uptake by Aspergillus                                                                                                            |
| tamariiNRC3biomass152                                                                                                                                                 |
| IV.13.2Effect of pretreated biomass on the uptake of Cu2+158                                                                                                          |
| IV.13.3 Metal ions desorption and reloading of fungal biomass159                                                                                                      |
| IV.14 Removal of metal ions from an industrial effluent by                                                                                                            |
| Aspergillus tamarii NRC3 biomass161                                                                                                                                   |
| V. DISCUSSION162                                                                                                                                                      |
| VI. CONCLUSION195                                                                                                                                                     |
| VII. SUMMARY197                                                                                                                                                       |
| VIII. REFERENCES202                                                                                                                                                   |
| ARABIC SUMMARY                                                                                                                                                        |

# List of Tables

| No. | Title                                                                                                              | Page |
|-----|--------------------------------------------------------------------------------------------------------------------|------|
| 1   | Some microbial sources of mannanases                                                                               | 17   |
| 2   | showed some microbial β-mannanases properities                                                                     | 21   |
| 3   | Application of some oligosaccharides in 'Foods for Specified Health Use' (FOSHU) in Japan                          | 26   |
| 4   | Some applications of immobilized cell in biotechnology                                                             | 35   |
| 5   | Effect of heavy metals on human's health                                                                           | 38   |
| 6   | Screening of fungal isolates for the highest production of extracellular β-mannanase via static fermentation       | 89   |
| 7   | Screening of fungal isolates for the highest production of extracellular β-mannanase via shaking fermentation      | 90   |
| 8   | Effect of different buffers on crude mannanase activity                                                            | 96   |
| 9   | Effect of different media on β-mannanase production by <i>Aspergillus tamarii</i> NRC3                             | 101  |
| 10  | Effect of different natural substrates on β-mannanase production by <i>Aspergillus tamarii</i> NRC3                | 102  |
| 11  | Effect of different carbohydrates on β-mannanase production by <i>Aspergillus tamarii</i> NRC3                     | 102  |
| 12  | Effect of different concentrations of locust beam gum on β-mannanase production by <i>Aspergillus tamarii</i> NRC3 | 103  |
| 13  | Effect of different inorganic nitrogen sources on β-mannanase production by <i>Aspergillus tamarii</i> NRC3        | 104  |

| 14 | Effect of different organic nitrogen sources on β-mannanase production by <i>Aspergillus tamarii</i> NRC3                                              | 105 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 15 | Comparison between organic (Meat extract) and inorganic (Sodium nitrate) nitrogen sources on β-mannanase production by <i>Aspergillus tamarii</i> NRC3 |     |
| 16 | Effect of initial pH of the culture medium on mannanase production by <i>Aspergillus tamarii</i> NRC3                                                  |     |
| 17 | Effect of initial pH of the culture medium on mannanase production by <i>Aspergillus tamarii</i> NRC3 using different buffers                          | 108 |
| 18 | Effect of different molarities of sodium-citrate buffer (pH; 5) on mannanase production by <i>Aspergillus tamarii</i> NRC 3.                           | 109 |
| 19 | Effect of inoculum size on mannanase production by spergillus tamarii NRC3                                                                             |     |
| 20 | Effect of incubation period on mannanase production by Aspergillus tamarii NRC3                                                                        |     |
| 21 | Effect of incubation temperature on mannanase production by <i>Aspergillus tamarii</i> NRC3                                                            | 113 |
| 22 | Effect of different surfactant on mannanase production by Aspergillus tamarii NRC3                                                                     | 113 |
| 23 | Comparative processes of free and immobilized cells of <i>Aspergillus tamarii NRC3</i> entrapped in different matrix for β-mannanase production        |     |
| 24 | Effectiveness factor for each matrix immobilized and free cells.                                                                                       | 117 |
| 25 | Continuous production of mannanase with agrose immobilized cells by repeated batch cultures: reusabilit test                                           | 122 |
| 26 | comparison between immobilized cells and free cells at total $\beta$ -mannanase production                                                             | 123 |

| 27 | Partial purification of $\beta$ -mannanase by salting out with ammonium sulfate                                                   | 124 |
|----|-----------------------------------------------------------------------------------------------------------------------------------|-----|
| 28 | Partial purification of β-mannanase by ethanol                                                                                    |     |
| 29 | Partial purification of β-mannanase by acetone                                                                                    |     |
| 30 | Purifications steps, purification folds and recovery yields of $\beta$ -mannanase                                                 | 128 |
| 31 | Amino acid content of of purified β-mannanase                                                                                     | 130 |
| 32 | Effect of pH on the activity and stability of purified $\beta$ -mannanase                                                         | 133 |
| 33 | Effect of different Molarities of sod.citrate buffer on purified mannanase at pH 6                                                | 135 |
| 34 | Effect of pH stability on the purified mannanase activity                                                                         | 136 |
| 35 | Effect of reaction temperature on the purified mannanase                                                                          | 138 |
| 36 | Calculation of activation energy                                                                                                  | 139 |
| 37 | Heat inactivation kinetics of the purified mannanase                                                                              | 140 |
| 38 | Effect of different metal ions on purified β-mannanase activity at two concentrations (1mM, 10mM)                                 |     |
| 39 | Effect of some inhibitors or activator compounds and surfactants on purified $\beta$ -mannanase at two concentrations (1mM, 10mM) | 144 |
| 40 | Reducing Sugar, Total Sugar and Degree of Polymerization (DP) with various locust bean gum Hydrolysis Time                        | 148 |
| 41 | The effect of Aspergillus tamarii NRC3 MOS on Lactobacillus spp., and some pathogenic strains                                     | 151 |
| 42 | Effect of initial copper (II) concentration                                                                                       | 153 |
| 43 | Effect of initial pH on copper (II) uptake                                                                                        | 155 |

| 44 | Cu <sup>2+</sup> uptake by living and dead <i>Aspergillus tamarii</i> NRC3 biomass           | 159 |
|----|----------------------------------------------------------------------------------------------|-----|
| 45 | Metal ions desorption by different desorbing agents                                          | 160 |
| 46 | Metal ions reloading by regenerated biomass                                                  | 160 |
| 47 | Removal of heavy metal ions from an industrial effluent by Aspergillus tamarii NRC 3 biomass | 161 |

# List of Figures

| No. | Title                                                                                                                                                       | Page  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1   | Structure of different types of mannans found in nature                                                                                                     | 11    |
| 2   | The structure of locust bean gum and tara gum                                                                                                               | 12    |
| 3   | Action of $\beta$ -mannanase and $\beta$ -mannosidase                                                                                                       | 14    |
| 4   | Homosynergetic and Heterosynergetic actions of $\beta$ -mannanase, $\beta$ -mannosidase, $\beta$ -glucosidase on glucomannan, and $\beta$ -galactosidase on | 15    |
| 5   | Principal methods of immobilization                                                                                                                         | 32    |
| 6   | Mechanisms of heavy metal uptake by microorganisms                                                                                                          | 47    |
| 7   | Mannanolytic Activity of fungal isolates on locust bean gum medium.                                                                                         | 87    |
| 8   | Scanning electron micrograph (SEM) of Aspergillus tamarii NRC3.                                                                                             | 91    |
| 9   | Phylogenetic tree of <i>Aspergillus tamarii</i> NRC3(a), and rRNA analysis of <i>Aspergillus tamarii</i> NRC3(b <sub>1,2</sub> )                            | 92-94 |
| 10  | detection of aflatoxins on a standard sample (a) and in isolate NRC3 culture filtrate (b) using                                                             | 95    |
| 11  | Effect of different pHs of sodium citrate buffer on crude $\beta$ - mannanase activity                                                                      | 97    |
| 12  | Effect of different molarities of sodium citrate buffer at pH (5.5) on crude $\beta$ -mannanase activity                                                    | 98    |
| 13  | Effect of reaction temperature on crude β-mannanase activity                                                                                                | 99    |