SIMULATION OF TOMATO CROP PRODUCTION BEHAVIOR UNDER DEFICIT IRRIGATION USING CROP MODEL

By

ZEINAB MAHMOUD MOHAMED HENDY

B. Sc. Agric. Sc. (Agric. Engineering), Ain Shams University, 2009 M. Sc. Agric. Sc. (Agric. Engineering), Ain Shams University, 2013

A Thesis Submitted in Partial Fulfillment

Of

The Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Sciences

(On-Farm Irrigation and Drainage Engineering)
Department of Agricultural Engineering
Faculty of Agriculture
Ain Shams University

Approval Sheet

SIMULATION OF TOMATO CROP PRODUCTION BEHAVIOR UNDER DEFICIT IRRIGATION USING CROP MODEL

By

ZEINAB MAHMOUD MOHAMED HENDY

B. Sc. Agric. Sc. (Agric. Engineering), Ain Shams University, 2009 M. Sc. Agric. Sc. (Agric. Engineering), Ain Shams University, 2013

This thesis for M. Sc. degree has been approved by:

Dr. Mahmoud Abdel-Aziz Hassan	
Prof. Emeritus of Agricultural Enginee	ring, Faculty of Agriculture,
Zagazig University.	
Dr. Mahmoud Mohamed Hegazi	
Prof. Emeritus of Agricultural Engineer	ring, Faculty of Agriculture,
Ain Shams University.	
Dr. Ahmed Abou El-Hassan Abdel-Aziz	
Prof. of Agricultural Engineering, Fact	ulty of Agriculture, Ain Shams
University	
Dr. Abd El-Ghany Mohamed El-Gindy	
Prof. Emeritus of Agricultural Engineer	ring, Faculty of Agriculture,
Ain Shams University.	

Date of Examination: 22/1/2019

SIMULATION OF TOMATO CROP PRODUCTION BEHAVIOR UNDER DEFICIT IRRIGATION USING CROP MODEL

By

ZEINAB MAHMOUD MOHAMED HENDY

B. Sc. Agric. Sc. (Agric. Engineering), Ain Shams University, 2009 M. Sc. Agric. Sc. (Agric. Engineering), Ain Shams University, 2013

Under the supervision of:

Dr. Abd El-Ghany Mohamed El-Gindy

Prof. Emeritus of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Ahmed Abou El-Hassan Abdel-Aziz

Prof. of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University

Dr. Samar Mohamed Attaher

Senoir Reasrech of Agricultural Engineering, Agriculture Engineering Research Institution, Agricultural Research Center

ABSTRACT

Zeinab Mahmoud Mohamed Hendy: Simulation of Tomato Crop Production Behavior under Deficit Irrigation Using Crop Model PhD. Thesis, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, 2019.

Fresh water shortage is a critical problem that is continuously increasing, due to population growth, unsustainable usage of water resources, and the projected climate change. The impact of water shortage is more noticeable in arid regions and has higher impacts over remote regions and communities, especially in developing countries. Under limited and rare water resources in Egypt, deficit irrigation and good irrigation management could be an efficient solution for water shortage by getting the same amount of crop production or higher using less irrigation requirement.

The aim of this research is to study some irrigation schemes to enhance water productivity and decrease presented irrigation requirement of tomato crop and evaluate the yield response under water stress at sensitive growth stage. Using crop model program with different climate scenarios to predict production and water consumption in the future. Also, conducted the effects of water shortage upon fruit quality.

The water productivity WP results lead to that the 100% ETc for tomato fruit does not achieve the highest benefits, but it is possible to save water and maintaining high fruit quality by decreasing the ETc at the whole growing stages to (80% ETc). Indeed, it is possible to save water improving its use efficiency in processing tomato, but water should be applied to the crop throughout the whole growing season, even at a low rate (80% ETc), to achieve adequate fruit yield, minimizing fruit losses and maintaining high fruit quality levels.

Also, results show that the length of the crop growth cycle decreasing by 2050s for all irrigation treatment due to the increasing in temperature. While, the rate of maturity is relatively faster in high

emission scenario (RCP8.5) as opposed to low emission scenario (RCP4.5). Furthermore, on average, the number of days between transplanting and maturity for tomatoes is expected to be reduced by about 3 –11 days by the end of 2050s, compared to reference period values.

On the other hand, the irrigation treatments seem to have higher impacts on the tomato dry yield, than temperature increase. That the tomato yield is expected to decrease under the current and future climate conditions, as a result to applying deficit irrigation applications.

Keywords: Deficit irrigation; Drip irrigation; tomato crop; AquaCrop; climate change.

ACKNOWLEDGEMENT

First of all, thanks to **ALLAH** for his blessings.

I wish to express my deep appreciation to **Prof. Abd El-Ghany Mohamed El-Gindy and Prof. Ahmed Abou El-Hassan Abdel-Aziz,** for their kindly supervision throughout this work, they have been helpful throughout the completion of this thesis, for their time they gave to me and the interest that they have shown also, for the valuable discussions, suggestions and helpful criticism, which helped to finalize this work.

I sincerely thank **Dr. Samar Mohamed Attaher** for suggesting the topic of study, for supervision and for her valuable discussions, for her motivation and continuous support, for kind help, for reviewing the manuscript and for her help to calibrate the crop model.

My deep appreciation also goes to **Dr. Salama Abdelhamid Abdalhady** for his supervision and coordination, he helped me too much during the field work.

Special thanks to all staff members of Agricultural Engineering Department, whose friendly encouragement helped me to overcome the up and downs that postgraduate studies demand.

Finally, deepest appreciations are going towards my Mother, my Father and my Husband for their understanding, patience and endless support and encouragement.

CONTENTS

Subject	Page
LIST OF TABLES	v
LIST OF FIGURES	vi
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	3
2.1. Agricultural water profile of Egypt	3
2.2. Water Productivity (WP) concept for on-farm irrigation.	5
2.3. Irrigation water requirements	6
2.4. Drip irrigation system	8
2.5. Deficit irrigation concept and application	9
2.6. Tomato crop	10
2.7. Effect of deficit irrigation on tomato crop	15
2.8. Energy consumption in on-farm irrigation	17
2.9. AquaCrop Model	18
2.10. Climate change	23
2.10.1. Climate change overview	23
2.10.2. Effect of climate change on crop production	25
2.10.3. General Circulation Models (GCMs)	27
2.10.3.1. Geophysical Fluid Dynamics Laboratory model	
(GFDL)	27
2.10.3.2. Commonwealth Scientific and Industrial Research	_,
Organization model (CSIRO)	28
2.10.3.3. A European community Earth-System Model	
(EC-EARTH)	28
2.10.4. Representative Concentration Pathway (RCP)	28
III. MATERIALS AND METHODS	30
3.1. The structure of the study	30
3.2. Investigate the effect of applying different deficit	
irrigation schemes on the growth parameters and the yield	
of tomato crop	30
3.2.1. Plant materials and cultivation system	30
3.2.2. Soil and water characteristics	31

3.2.3. Experiment treatments	32
3.2.4. Experimental design	33
3.2.5. Irrigation system description	33
3.2.6. On-farm management practices	35
3.2.7. Determination of irrigation water requirements	35
3.2.8. Weather data	36
3.2.9. Soil water content	41
3.2.10. Plant and yield measurements	41
3.2.11. Tomato fruit quality	42
3.2.12. Crop-water productivity	42
3.2.13. Energy consumption	43
3.3. Calibration of AquaCrop model to simulate the effect of	
deficit irrigation schemes on tomato crop production	43
3.3.1. Climate file	43
3.3.2. Soil files	44
3.3.3. Growing degree days (GDD)	44
3.3.4. Groundwater file	44
3.3.5. Crop file	45
3.3.6. Irrigation files	45
3.3.7. Field management file	47
3.4. Investigate the impacts of climate change on tomato crop	
production under full irrigation and different deficit	
irrigation schemes	48
3.5. Statistical evaluation methods	48
IV. RESULTS AND DISCUSSION	50
4.1. The effect of applying different deficit irrigation schemes	
on the growth parameters and the yield of tomato crop	50
4.1.1. The applied irrigation applications under the	
investigated deficit irrigation schemes	50
4.1.2. The effect of applying different deficit irrigation	
schemes on the tomato crop yield	52
4.1.3. The effect of applying different deficit irrigation	
schemes on WP	54
4.1.4. The effect of applying different deficit irrigation	
schemes on the fruits quality	56

4.1.5. The effect of applying different deficit irrigation	
schemes on the energy consumption	57
4.2. Calibration of AquaCrop model to simulate the effect of	
deficit irrigation schemes on tomato crop production	58
4.2.1. Canopy cover simulation	59
4.2.2. Biomass simulation	62
4.2.3. Yield and HI simulation	62
4.3. The impacts of climate change on tomato crop production	
under full irrigation and different deficit irrigation	
schemes	66
4.3.1. Climate models overview	66
4.3.2. The impact of climate change on the tomato crop	
growth cycle	68
4.3.3. The impact of climate change on the tomato ETc	68
4.3.4. The impact of climate change on tomato dry yield	70
4.3.5. The impact of climate change on tomato WP	72
V. SUMMARY AND CONCLUSION	75
VI. REFERENCES	79
VII. APPENDIX	93
ARABIC SUMMARY	

LIST OF TABLES

Γable	Subject
No.	
1	Main crop parameters of tomato important for water
	management
2	Mechanical analysis, soil texture and soil-water relationship
	parameters of soil samples at Shoubra El khima site,
	Qalyoubia
3	Some chemical analysis of soil samples at Shoubra El khima
	site,Qalyoubia
4	Some chemical analysis of irrigation water sample at
	Shoubra El khima site, Qalyoubia
5	The standered crop coefficient (Kc) for tomato crop in
	Mediterranean climate, at the crop growth stages
6	The monthly average weather parameters for the tomato
	growing seasons 2015/2016 and 2016/2017
7	Total water applied rates (mm) for all experiment treatments
	for the tomato growing seasons, and the percentage of the
	saved water under deficit irrigation treatments
8	The average change [%] observed in the tomato fresh yield
	due to the applications of deficit irrigation compared to the
	yield under full irrigation
9	Statistical analysis of tomato crop yield per plant under tested
	variables
10	Statistical analysis for tomato fruit quality parameter under
	tested variables
11	The crop growth parameters that used in the calibration
	process of AquCrop model
12	The RMSE and NRMSE for the climate models as compared
	to the reference period for Tmax, Tmin and Eto
13	The average environmental conditions at the tomato season,
	resulted from the GCM models of the three-time steps of the
	investigation

LIST OF FIGURES

Figure No.	Subject	Page
1	The experimental layout and the drip system structure.	34
2	The daily maximum and minimum air temperature [°C] for the tomato growing seasons 2015/2016 and 2016/2017	38
3	The daily maximum and minimum air relative humidity [%] for the tomato growing seasons 2015/2016 and 2016/2017	39
4	The daily average wind speed [m/s] for the tomato growing seasons 2015/2016 and 2016/2017	40
5	Irrigation applications applied in the AquaCrop irrigation files (IRR files) for tomato simulations	46
6	The estimated daily ET _o (mm/day) for the tomato growing seasons 2015/2016 and 2016/2017	51
7	The estimated daily ET _c (mm/day) for the tomato growing seasons 2015/2016 and 2016/2017	52
8	The tomato fresh and dry yield of the under the investigated irrigation treatments	54
9	Effect of water application rate on tomato water productivity	55
10	Energy consumption under different water treatments for the first and second season of the experiment	57
11	Energy cost under different water treatments for the first and second season of the experiment	58
12	Actual and simulated canopy cover data for T100 treatment	60
13	Actual and simulated canopy cover data for TS80 treatment	60
14	Actual and simulated canopy cover data for TC80 treatment	61
15	Actual and simulated canopy cover data for TS60 treatment	61

16	Actual and simulated canopy cover data for TC60	
	treatment	61
17	The actual biomass vs. the simulated biomass with the	
	calibrated AquaCrop to simulate tomato crop	63
18	The actual dry yield vs. the simulated dry yield with the	
	calibrated AquaCrop to simulate tomato crop	64
19	The actual HI vs. the simulated HI with the calibrated	
	AquaCrop to simulate tomato crop	65
20	The impact of the climate change on the tomato growth	
	cycle, under the climate scenario RCP4.5 and	
	RCP8.5	69
21	The impact of the climate change on the tomato ETc,	70
	under the climate scenario RCP4.5 and RCP8.5	/(
22	The impact of the climate change on the tomato dry	
	yield, under the climate scenario RCP4.5 and RCP8.5.	72
23	The impact of the climate change on the tomato WP,	
	under the climate scenario RCP4.5 and RCP8.5	74

INTRODUCTION

Tomatoes are commercially important vegetable in the worldwide, with an annual production more than 120 million tons. Tomato is mainly cultivated in Egypt followed by China, United States, Turkey and India. (FAO STAT Database, 2012). Under limited and rare water resources in Egypt, deficit irrigation and good irrigation mangment could be an efficient solution for water shortage by getting the same amount of crop production or higher using less irrigation requirment. Tomato production arrived in Egypt to 8.5 million tons with an average productivity ranged from 30-60 ton/feddan. The total cultivation area in 2013 for tomato crop was 488753 Fadden. (Bulletin Agriculture Statistics, 2013).

One of the solution of this problem is to enhance water productivity and decrease present irrigation requirement of tomato crop. The deficit irrigation levels and good irrigation scheduling could improve tomato water productivity, especially when deficit levels applied at both early and late stages of crop growth stages. (Attaher, 2012)

AquaCrop is a new decision support tool useful in modeling and devising strategies for efficient management of crop-water productivity at farm level. To make AquaCrop globally applicable, it must be tested in different locations with different soil conditions, crops, agronomic practices and climatic conditions. (Darko., et al., 2016).

AquaCrop is exclusively based on the water-driven growth module, in that transpiration is converted into biomass through water productivity parameter (**Todorovic et al., 2009**).

The main objective of this study is to investgate the possablities to improve the irrigation water productivity of one of the tomato crop. This objective coud be achived by following the three steps:

- (i)Investigate the actual effect of applying different deficit irrigation schemes on the growth parameters and the yield of tomato crop.
- (ii)Conduct a calibration of AquaCrop model to simulate the effect of deficit irrigation schemes on tomato crop, under the local current conditions

T	V	R	O	n	TI	C	ΓT	n	N	J
			.,	.,		•			ЛΝ	

	(iii)Assess	the	impact	of	climate	change	on	tomato	crop	under	full
irrigati	on and diffe	erent	t deficit	irri	gation so	chemes.					

REVIEW OF LITERATURE

2.1 Agricultural water profile of Egypt:

Water is the natural resource that exerts the greatest constraint on Egypt's agricultural production system (Attia, 2004). The Nile River is the main source of water for Egypt, with an annual flow of 55.5 Mm³/year. Underground water in the Nile valley and Delta is estimated at 6.9 Mm³/year. Agricultural sewage water recycling is estimated at 11.9 Mm³/year. The waste water recycling is estimated at 1.2 Mm³/year. Rains and floods are estimated at 0.65 Mm³/year. Sea water desalination is estimated at 0.1 Mm³/year. The total actual renewable water resources of the country are thus 76.3 km³/year. Total cultivated area is 9095705 Feddan in 2015 with a water consumption 80% of total available water resources (FAO STAT Database, 2012).

Egypt is facing increasing water needs, caused by a rapidly growing population, an increased urbanization, higher standards of living, and by an agricultural policy which focuses on increasing production in order to feed the growing population. This means that Egypt has to do more with less water (Allam et al., 2005).

Agricultural activities in Egypt engages about 55% of the labor force, while contributing about 13% to the GDP (**CAPMAS**, **2015**). The "Old-land" at the Nile Valley and the Nile Delta represents about 80% of the cultivated area, with "New-land" representing the rest. The cultivated land base of Egypt is about 3.5 million hectares, with a total annual cropping area of about 6.2 million hectares.

Agriculture in Egypt is one of the unique examples of full irrigation application, that Egypt has one of the most complicated irrigation systems covering almost all the agricultural areas along the nation. Due to the different conditions of soil, availability and quality of water and climatic conditions, Egypt has a vast variation of crops, including food, fiber, and oil crops (**IFAD**, **2012**).

Egypt has one of the most complicated irrigation systems covering almost all the agricultural areas along the nation. Where, the irrigated