

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics Engineering and Electrical Communications

The Design of Interface Circuits for MEMS Sensors

A Thesis submitted in partial fulfilment of the requirements of Master of Science in Electrical Engineering (Electronics Engineering and Electrical Communications)

by

Alaa Mohamed Safwat Mahmoud Abu Baker

Bachelor of Science in Electrical Engineering (Electronics Engineering and Electrical Communications) Faculty of Engineering, Ain Shams University, 2011

Supervised By

Prof. Dr.Mohamed Amin Dessoki Dr.Ayman Hassan Abd El-Aziz Hassan Ismail

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics Engineering and Electrical Communications

The Design of Interface Circuits for MEMS Sensors

by

Alaa Mohamed Safwat Mahmoud Abu Baker

 ${\it Bachelor~of~Science~in~Electrical~Engineering}$ (Electronics Engineering and Electrical Communications) ${\it Faculty~of~Engineering, Ain~Shams~University,~2011}$

Examiners' Committee

Name and affiliation	Signature
Prof. Dr.El-Sayed Mostafa Saad Electronics & Communications Engineering Dep Faculty of Engineering, Helwan University.	
Prof. Dr. Khaled Wagih Sharaf Electronics & Communications Engineering Dep Faculty of Engineering, Ain Shams University.	
Prof. Dr. Mohamed Amin Dessouky Electronics & Communications Engineering Dep Faculty of Engineering, Ain Shams University.	

Statement

This thesis is submitted as a partial fulfillment of Master of Science

in Electrical Engineering, Faculty of Engineering, Ain shams Univer-

sity. The author carried out the work included in this thesis, and no

part of it has been submitted for a degree or a qualification at any

other scientific entity.

Name: Alaa Mohamed Safwat Mahmoud Abu Baker

Signature

Date: 24/11/2018

Researcher Data

Name: Alaa Mohamed Safwat Mahmoud Abu Baker

Date of Birth: 22/10/1988

Place of Birth: Cairo, Egypt

Last academic degree: Bachelor of Science in Electrical Engineering

Field of specialization: Electronics Engineering and Electrical

Communications

University issued the degree :Ain Shams

Date of issued degree : June 2011

Abstract

Faculty of Engineering – Ain Shams University Electronics and Communication Engineering Department

Thesis title: "The Design of Interface Circuits for MEMS Sensors"

Submitted by: Alaa Mohamed Safwat Mahmoud Abu Baker

Degree: Master of Science in Electrical Engineering

Abstract A new energy-efficient dual-slope capacitance-to-digital interface circuit is proposed. The proposed interface circuit is a general purpose interface that can be adapted for multi-sensors IOT applications. This interface utilizes a new iterative charge sharing technique, which can be easily configured for different capacitive sensor ranges. The interface employs a switched capacitor circuit followed by a low-power dynamic comparator and a digital controller with a counter to generate the digital output, corresponding to the input capacitance of the sensor. The simplicity of the proposed capacitance-to-digital converter(CDC) architecture leads to an energy efficient interface. Detailed analysis of the proposed CDC architecture with emphasis on the linearity, conversion time, and noise are presented and verified by the simulation. The proposed CDC achieves a resolution of 8.4 bit 1.56pJ FOM for a capacitor sensor range of 8pF and a supply voltage of 1.2V in $0.18\mu m$ CMOS technology node.

Acknowledgment

All praise is due to ALLAH, Most Merciful, the lord of the worlds, who taught man what he knew not. I would like to thank ALLAH Almighty for bestowing upon me the chance, strength and ability to complete this work. I wish to express my gratitude to my family for their encouragement, I wish to express my gratitude to supervisors, Prof.Dr. Mohamed El Dossouki and Dr. Ayman Ismail for their exceptional guidance, encouragement, insightful thoughts and useful discussions. I am deeply grateful to Dr. Ayman for his continuous encouragement, guidance and follow up without which this work wouldn't have seen the light. I learnt a lot from Dr. Ayman on the personal, professional and technical levels. May ALLAH reward him for his effort. I would like also to thank my colleagues at ex-employer MEMS Vision LLC for being my thoughtful friends and for being my irreplaceable family at work. Eng. Mohammad Mamdouh for giving me the opportunity to design, propose, and implement different solutions for complex and challenge able systems for different applications.

Alaa Mohamed Safwat Mahmoud Abu Baker Electronics and Communication Department Faculty of Engineering Ain Shams University Cairo, Egypt November 2018

Thesis Summary

Summary

The thesis is divided into Five chapters as listed below:

Chapter 1

Chapter 1 provides the introduction, motivation, and objective of this work

Chapter 2

Chapter 2 covers different types of MEMS capacitive sensors with state of art capacitance to digital interface circuits with emphasis on the advantages and disadvantages relative

to the proposed capacitance to digital interface circuit

Chapter 3

Chapter 3 provides the introduction for the proposed CDC system, with system and

circuit analysis for the proposed system.

Chapter 4

Chapter 4 gives the circuits implementation and simulation results for the proposed

capacitance to digital converter using equations determined in the chapter 3, Also the

achieved performance parameters for the proposed system is compared with state of art

capacitance to digital converters.

Chapter 5

chapter 5 provides the conclusion of the work, and future work.

Key words: Capacitance to digital converter (CDC)

Contents

A	bstra	et en	ix
C	onter	t s	xii
Li	\mathbf{st} of	Figures	$\mathbf{x}\mathbf{v}$
Li	\mathbf{st} of	Γ ables ${f x}$	vii
т;	ct O	Abbreviations xv	z iii
			V 111
Li	st O	Symbols	хx
1	Intr	oduction	1
	1.1	Background and Motivation	1
	1.2	Thesis Organization	4
2		cature Review for MEMS Capacitive Sensors and State of The Art	
	Inte	rface Circuits	6
	2.1	Introduction	6
	2.2	MEMS Capacitive Sensors	6
		2.2.1 MEMS Capacitive Pressure Sensor	7
		2.2.2 MEMS Capacitive Humidity Sensor	9
		2.2.3 MEMS Capacitive Tilt Sensor	9
		2.2.4 MEMS Capacitive Proximity Sensor	10
	2.3	Interface Circuits for MEMS Capacitive Sensors	11
	2.4	The State of the Art Interface CDC Publications For MEMS Capacitive	
		Sensors	12
		2.4.1 Delta-Sigma Capacitance-to-Digital Converter	12
		2.4.2 SAR Capacitance-to-Digital Converter	15
		2.4.3 A Low-Energy SAR-Based Capacitance-to-Digital Converter for	
		Pressure Sensors	17
		2.4.4 A Capacitance-to-Digital Converter Based on Period Modulation .	18
		2.4.5 A Dual-Slope Capacitance-to-Digital Converter	20
	2.5	Conclusion	23
3	The	1	25
	3.1	Introduction	25
	3.2	The Dual-Slope Conversion Principle Of Operation	26
	3.3	A Dual-Slope Capacitive Interface System	27

Table of Contents xiv

		3.3.1 3.3.2	A Dual-Slope Capacitive Interface Circuit Architecture	27 28
	3.4		sed Dual Slope CDC System Analysis	33
	0.1	3.4.1	Analysis of Error in The derived CDC Transfer Characteristics	
		0.40	Expression	33
	0.5	3.4.2	Noise Analysis	34
	3.5		sed Dual Slope CDC Circuit Analysis	35
		3.5.1 3.5.2	Dynamic Comparator Offset	$\frac{35}{36}$
4	Circ	cuits Iı	mplementation and Simulation Results	41
	4.1		ts Implementation	41
	4.2		n Level Design	41
	4.3	_	it Implementation for Blocks & Sub-blocks	43
		4.3.1	Dynamic Comparator Circuit Implementation	43
			4.3.1.1 Simulation Results	46
		4.3.2	The Regenerative Latched Comparator Circuit Implementation	52
			4.3.2.1 Simulation Results	53
		4.3.3	Switched Capacitor Circuit Implementation	57
			4.3.3.1 Unit Capacitor Circuit Implementation	57
			4.3.3.2 Switch Circuit Implementation	58
			4.3.3.3 V_{TRP} Capacitor Circuit Implementation	60
	4.4	Systen	n Integration and Simulation Results	61
	4.5	The C	CDC Performance and Comparison to the State-of-the-Art	69
5	Con	clusio	ns and Suggested Future Work	72
	5.1	Conclu	asions	72
	5.2	Sugges	sted Future Work	73
Δ	Mat	tlah Co	ode For Taylor Expansion Error	74
•	IVIC		Sub For Taylor Expansion Effor	• •
В	Noi	se Ana	dysis For Input Referred Noise of The CDC	76
D:	hl:a-	graphy		78
u	DITO	1 apily		10

List of Figures

1.1	IOT markets and MEMS sensors [1]	4
1.2	Shipment of sensors which are relevant for IoT scenario in handsets and tablets [2]	9
1.3	Shipment of sensors which are relevant for IoT scenario in wearable devices [2]	ę
1.4	Low power IOT wireless sensor node modules [1]	4
2.1	Basic structure of a capacitive pressure sensor; (a) Normal mode and (b) touch mode [1]	8
2.2	A mechanical model of an actual accelerometer. [6]	1(
2.3	A mechanical model of an actual proximity sensor. [7]	11
2.4	The first integrator in the designed CDC and its signal diagram. [8]	13
2.5	Schematic of the designed second-order one-bit incremental delta-sigma CDC and its timing diagram. [8]	14
2.6	(a) Schematic of conventional SAR CDC.(b) Timing and operation phases of SAR CDC. [3]	15
2.7	Schematic of the SAR CDC with inverter based pre-amplifiers [3]	16
2.8	SAR-based CDC complete circuit block diagram. [5]	18
2.9	Period modulation based CDC complete circuit block diagram. [12]	19
2.10	Simplified block diagram of the dual slope CDC and an associated waveform. [10]	21
2.11	Circuit diagram of the dual slope CDC . [10]	
	Dual slope CDC wave-form. [10]	
3.1	Dual Slope Principle Of Operation	2
3.2	Schematic of the proposed dual-slope capacitive interface circuit	28
3.3	Schematic of the simplified proposed dual-slope capacitive interface circuit.	29
3.4	The operation of the new dual-slope CDC architecture	30
3.5	capacitive interface circuit clock phases	31
3.6	Mathematical error for the digital output for ln function and Taylor expansion considering the first two terms for $C_{\Delta}/C_{S_{min}}$	34
3.7	A Dynamic comparator diagram with model for offset volt V_{OS}	36
3.8	Charge injection when the switch is turned off.[16]	37
3.9	Using transimission gate to reduce the effect of the charge injection.[16] .	
3.10	Clock feed through.[16]	39
4.1	High gain differential amplifier. [19]	44
4.2	Dynamic Comparator Schematic	
4.3	Schematic of the designed dynamic comparator	4'