

Dispersion of biofilm formed by some Gram negative bacteria using microbial by-products

Thesis submitted for Partial Fulfillment of Master Degree in Microbiology

Ву

Nessma Mostafa Muhammed Gad

B.Sc. Microbiology, 2008

Supervisors

Dr. Einas H. Elshatoury

Dr. Sahar T.M. Tolba

Associate Professor of Microbiology,

Associate Professor of Microbiology,

Faculty of Science,

Faculty of Science,

Ain Shams University.

Ain Shams University.

Microbiology Department Faculty of Science Ain Shams University 2019

Approval Sheet

Dispersion of biofilm formed by some Gram negative bacteria using microbial by-products

By

Nessma Mostafa Muhammed Gad

B.Sc. Microbiology, Faculty of Science,

Ain Shams University, 2008

Supervisors: Approval

Dr. Einas H. Elshatoury

Associate Professor of Microbiology, Faculty of Science, Ain Shams University.

Dr. Sahar T.M. Tolba

Associate Professor of Microbiology, Faculty of Science, Ain Shams University.

Examination committee:

Dr. Mehrshan Taha El-Mokadem

Professor of Microbiology Faculty of Arts and Science (girls)-Ain Shams University

Dr. Azza Abd El-Fattah Mohamed

Professor of Microbiology Egyptian Atomic Energy Authority

Dr. Einas H. Elshatoury

Associate Professor of Microbiology, Faculty of Science, Ain Shams University.

Dr. Sahar T.M. Tolba

Associate Professor of Microbiology, Faculty of Science, Ain Shams University.

Examination date: University Council approval: **Approval date:**

Acknowledgements

I would like to thank my supervisors, Dr. Sahar Tolba & Dr. Einas El-Shatoury for the patient guidance, encouragement and advice they have provided throughout my time as their student.

I sincerely place on record my thanks to the Microbiology Department, Ain shams university for facilitating my research and for all the support rendered.

I would like also to thank the Clinical laboratory department at International Medical Center (IMC) & Professors at the Regional Center for Mycology & Biotechnology at Al-Azhar University for their cooperation & support.

Completing this work would not have been possible without the support and friendship provided by my best friend Nermine Mohammad. I'm very grateful for your continuous support, encouragement & advice throughout this journey. No words of thanks can sum up the gratitude I owe her.

I would like to express my sincere gratitude to my family for their spiritual support and continuous encouragement throughout my life. I would not have been here without you.

Last but not least, I dedicate this dissertation to my late father who has been a constant source of support and encouragement. No

words can express how proud I am to be his daughter and I dedicate every success to him.

Contents

LIST OF TABLES	<u>l</u>
LIST OF FIGURES	<u>ll</u>
ABBREVIATIONS	<u>II</u> I
ABSTRACT	5
INTRODUCTION	<u>6</u>
AIM OF WORK	<u>7</u>
I-REVIEW OF LITERATURE	8
1.0 BIOFILM DEFINITION	8
2.0 BIOFILM COMPOSITION	9
3.0 BIOFILM FORMATION	10
3.1 INITIAL CONTACT/ATTACHMENT TO THE SURFACE	10
3.2 MICRO-COLONY FORMATION	11
3.3 MATURATION AND FORMATION OF THE ARCHITECTURE OF THE BIOFILM	13
3.4 DETACHMENT/DISPERSION OF THE BIOFILM	14
4. RELATIONSHIP BETWEEN BIOFILM FORMATION AND DISEASE	15
4.1 DETACHMENT OF CELLS OR CELL AGGREGATES	15
4.2 PRODUCTION OF ENDOTOXINS	16
4.3 RESISTANCE TO THE HOST IMMUNE SYSTEM	16
4.4 PROVISION OF A NICHE FOR THE GENERATION OF RESISTANT ORGANISMS	16
5. BIOFILM AND ANTIBIOTIC RESISTANCE	17
5.1 DELAYED PENETRATION OF THE ANTIMICROBIAL AGENT	18
5.2 ALTERED GROWTH RATE OF BIOFILM ORGANISMS	18
5.3 OTHER PHYSIOLOGICAL CHANGES DUE TO BIOFILM MODE OF GROWTH	18
6. BIOFILM ASSOCIATED INFECTIONS (BAIS)	21
6.1 DEVICE ASSOCIATED BIOFILM INFECTIONS	22
6.1.1 PROSTHETIC HEART VALVES ENDOCARDITIS	22
6.1.2 CENTRAL VENOUS CATHETERS	24
6.1.3 URINARY CATHETERS	24
6.1.4 CONTACT LENSES	25
6.1.5 INTRAUTERINE DEVICES (IUD)	26
6.2 NON-DEVICE RELATED BIOFILM INFECTIONS	27
6.2.1 NATIVE VALVE ENDOCARDITIS	27
6.2.2 CYSTIC FIBROSIS	28

6.2.3 OTITIS MEDIA	28
6.2.4 CHRONIC BACTERIAL PROSTATITIS	28
6.2.5 PERIODONTITIS	29
7. BIOFILM CONTROL STRATEGIES	30
7.1 INHIBITION OF MICROBIAL ADHESION TO DEVICE SURFACES	30
7.2 PREVENTION OF BIOFILM FORMATION	31
7.3 PROMOTING MICROBIAL KILLING WITHIN AN ESTABLISHED BIOFILM	32
7.4 DISAGGREGATION OF THE BIOFILM MATRIX	33
8.0 BIOSURFACTANTS	33
8.1 CLASSIFICATION AND CHEMICAL STRUCTURE OF BS	34
8.1.1 GLYCOLIPIDS	34
8.1.2 LIPOPEPTIDES AND LIPOPROTEINS	34
8.1.3 FATTY ACIDS, PHOSPHOLIPIDS, AND NEUTRAL LIPIDS	34
8.1.4 POLYMERIC BIOSURFACTANTS	35
8.1.5 PARTICULATE BIOSURFACTANTS	35
8.2 PROPERTIES OF BIOSURFACTANTS	36
8.2.1 SURFACE AND INTERFACE ACTIVITY	36
8.2.2 TEMPERATURE AND PH TOLERANCE	36
8.2.3 BIODEGRADABILITY	36
8.2.4 LOW TOXICITY	37
8.3 BIOSURFACTANTS AND THEIR POTENTIAL APPLICATION IN MEDICINE	37
9.0 BACILLUS SUBTILIS: A BIOCONTROL AGENT	37
II-MATERIALS & METHODS	
2.1 MATERIALS	41
2.1.1CLINICAL ISOLATES AND DATA COLLECTION	41
2.1.2 CULTURE MEDIA	42
2.1.3 BIO-SURFACTANT PRODUCING ORGANISM	43
2.1.4 CHEMICALS	43
2.2 METHODS	44
2.2.1 PURIFICATION AND STORAGE OF CLINICAL ISOLATES	44
2.2.2 IDENTIFICATION OF GRAM NEGATIVE PATHOGENS	44
2.2.3 ANTIBIOTIC SUSCEPTIBILITY TESTING (AST)	46
2.2.4 BIOFILM PRODUCTION SCREENING	46
2.2.4.1 OUALITATIVE SCREEN BY TUBE METHOD	46

2.2.4.2 QUANTITATIVE SCREEN BY TISSUE CULTURE PLATE METHOD (TCP)	48
2.2.5 BIO-SURFACTANT PRODUCTION AND EXTRACTION	50
2.2.6 DETERMINATION OF BIO-SURFACTANT ACTIVITY	51
2.2.7 DETERMINATION OF ANTIMICROBIAL ACTIVITY OF THE BS	52
2.2.8 QUANTITATIVE ANTI-BIOFILM SCREEN	52
III- RESULTS	54
3.1 COLLECTED CLINICAL DATA	54
3.1.1 CLINICAL SAMPLES	62
3.1.2 TYPES OF INFECTION	63
3.1.3 TYPES OF INFECTION WITH RESPECT TO PATIENT'S GENDER	63
3.1.4 TYPES OF INFECTION WITH RESPECT TO PATIENTS' LOCATION	64
3.2 IDENTIFICATION OF ISOLATES	65
3.3 ANTIBIOTIC SUSCEPTIBILITY TESTING (AST)	66
3.4 BIOFILM PRODUCTION	78
3.4.1 QUALITATIVE SCREEN OF BIOFILM PRODUCTION BY TUBE METHOD	78
3.4.2 QUANTITATIVE MEASUREMENT OF BIOFILM PRODUCTION	81
3.5 BIO-SURFACTANT PRODUCTION & TESTING	85
3.5.1 DETERMINATION OF BIO-SURFACTANT ACTIVITY	85
3.5.2 DETERMINATION OF ANTIMICROBIAL ACTIVITY OF THE BS	85
3.5.3 QUANTITATIVE ANTI-BIOFILM SCREEN	87
IV- DICUSSION	92
V- CONCLUSION	99
VI- RECOMMENDATION	100
VII- THESIS SUMMARY	101
VIII- REFERENCES	103

List of Tables

Table 1 : A list of some active compounds produced by <i>B. subtilis</i> and their mode of action.	39
Table 2 : Antimicrobial categories and agents used in this study.	47
Table 3: MIC break points for antibiotics used.	48
Table 4: Interpretation of biofilm production.	50
Table 5 : Collected clinical data of patients and samples.	54
Table 6 : Antibiotic susceptibility test results for clinical isolates in the study.	67
Table 7 : Results of Qualitative tube method.	80
Table 8: Interpretation of TCP.	82
Table 9: TCP quantitative results.	83
Table 10 : Results of antimicrobial effect of different concentrations of the extracted bio-surfactant	86
Table 11 : Results of anti-biofilm effect of sub-lethal concentrations of the extracted bio-surfactant on biofilm formed by <i>A. baumannii</i> .	87
Table 12 : Results of anti-biofilm effect of the extracted bio-surfactant on biofilm formed by <i>P. aeruginosa</i> .	89
Table 13: Results of anti-biofilm effect of sub-lethal concentrations of the extracted bio-surfactant.	91

List of figures

Figure 1: Biofilm composition.	10
Figure 2: Stages in the biofilm formation process.	12
Figure 3: Schematic representation of the structure of a mature biofilm.	13
Figure 4: Schematic representation of a <i>P. aeruginosa</i> biofilm.	20
Figure 5: Most studied biofilm-related infections in humans.	21
Figure 6: Diagram of intravenous catheter with biofilm growth.	25
Figure 7:Prevention of microbial adhesion by hydrophilic coating.	31
Figure 8: Promoting microbial killing within an established biofilm using a	32
combination of an antibiotic and a matrix-dispersing enzyme.	
Figure 9: Disaggregation of the biofilm matrix using an enzyme.	33
Figure 10: Vitek 2 compact sysytem.	45
Figure 11: Gram negative identification card (GN-ID).	45
Figure 12: Loading cassette (rack).	45
Figure 13: Oil spreading test.	51
Figure 14: Distribution of clinical specimens in the study.	62
Figure 15: Distribution of infections in the study.	63
Figure 16: Types of infections in males and female patients.	64
Figure 17: Distribution of infections in ICU and Non ICU.	64
Figure 18: Distribution of clinical isolates in the study.	65
Figure 19: Distribution of multidrug resistant isolates in the study.	78
Figure 20: biofilm formation in polystyrene tubes.	7 9
Figure 21: biofilm formation in polystyrene tubes after crystal violet	7 9
staining.	
Figure 22: Qualitative biofilm production screen results for <i>P. aeruginosa</i>	81
and <i>A. baumannii</i> by tube method.	
Figure 23: Quantitative Biofilm production screen results for <i>P. aeruginosa</i>	82
and <i>A. baumannii</i> by Tissue culture plate method.	
Figure 24: Results of TCP	84
Figure 25: Quantitative Biofilm production screen results for MDR P.	85
aeruginosa and A. baumannii isolates by Tissue culture plate method	
Figure 26: Results of anti-biofilm effect of sub-lethal concentrations of the	91
extracted bio-surfactant.	

Abbreviations

AST Antibiotic Susceptibility Testing

BAIs Biofilm Associated Infections

BAL Broncoalveolar Lavage

BS Biosurfactants

BSI Blood Stream Infection

CCU Coronary Care Unit

CDC Centers for Disease Control and Prevention

CF Cystic Fibrosis

CFS Cell Free Supernatant

The Clinical and Laboratory Standards

CLSI Institute

CMC Critical Micelle Concentration

CoNS Coagulase Negative Staphylococcus

CSF Cerebrospinal Fluid

CVCs Central Venous Catheters

CVL Central Venous Line

DA-HAIs Device-Associated Health Care-Associated

Infections

DANIs Device-Associated Nosocomial Infections

DNA Deoxyribonucleic Acid

eDNA Extracellular Deoxyribonucleic Acid

ELISA Enzyme-Linked Immunosorbent Assay

EMCC Egyptian Microbiological Culture Collection

EPS Extracellular Polymeric Substances

ETT Endotracheal Tube

Global PPL Global Priority Pathogens List

GRAS Generally Regarded As Safe

HAIs Health care—associated infections

ICUs Intensive Care Units

INICC International Nosocomial Infection Control

Consortium

Infection Prevention and Control

IPC Interventions

IUD Intrauterine Devices

MDR Multi-Drug Resistant

MIC Minimum Inhibitory Concentration

NCCLS National Committee for Clinical Laboratory

Standards

NHSN National Healthcare Safety Network

NICU Neonate Intensive Care Unit

NIH National Institutes of Health

NVE Natural Valve Endocarditis

OD Optical Density

OM Otitis Media

PICU Pediatric Intensive Care Unit

PVE Prosthetic Valve Endocarditis

QS Quorum Sensing

RNA Ribonucleic Acid

RTI Respiratory Tract Infection

SD Standard Deviation

ST Surface Tension

TCP Tissue Culture Plate

TM Tube Method

TSB Tryptone Soy Broth

UTI Urinary Tract Infection

WHO World Health Organization

Abstract

Antimicrobial agents have been used for the last 70 years to treat patients who have infectious diseases. However, these drugs have been used for long time that the infectious organisms have adapted to them through different mechanisms. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and disinfectants as well as body's defense system.

Bacteria in biofilms embed themselves in extracellular matrix that acts as shield from antibacterials and help them to overcome harsh nutritional and environmental conditions. One promising way of disabling biofilm resistance is through breaking up this matrix using biosurfactants. *A. baumannii & P. aeruginosa* isolated from Egyptian hospitals were tested for their antibiotic resistance and ability to form biofilm. Out of 22 Multi-drug resistant (MDR) *P. aeruginosa* isolates, 100 % were biofilm formers. While in *A. baumannii* out of 36 MDR, 77% showed biofilm formation ability.

The anti-biofilm activity of a bio-surfactant extracted from *Bacillus subtilis* was tested against biofilms of *P. aeruginosa* and *A. baumannii*. The dispersion of biofilm occurred in 44-46 % of *P. aeruginosa* and 64% - 66 % of *A. baumannii*. using 0.25 and 0.5 mg/ml of the *Bacillus subtilis* extract.

Keywords: Biofilm, Multi-drug resistant, Anti-biofilm, Bio-surfactant, *Bacillus subtilis*.