The Effect of Injectable PRF Mixed with Composite Bone Graft in Immediate Implant Placement; Randomized Clinical Trial

Thesis

Submitted to Oral Medicine, Periodontology and Oral Diagnosis Department, Faculty of Dentistry, Ain Shams University, for partial fulfillment of the requirements for Master's Degree in Oral Medicine, Periodontology and Oral Diagnosis

By

Mohammed Omar Abdulgader Ahmed

B.D.S. 2012 University of Aden– Yemen

Faculty of Dentistry
Ain Shams University
2019

Supervisors

Prof. Dr. Khaled Abd El-Ghaffar

Professor of Oral Medicine, Periodontology and Oral Diagnosis Minister of Higher Education and Scientific Research

Dr. Fatma Hamed El-Demerdash

Lecturer of Oral Medicine, Periodontology and Oral Diagnosis Faculty of Dentistry, Ain-Shams University

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I would like to extend my sincerest thanks and appreciation to those patient souls who helped me to accomplish this study. I would like to extend my gratitude to all of the faculty and staff in the Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Ain Shams University and special recognition goes to the following beloved individuals:

Prof. Dr. Khaled Abd El-Ghaffar, Professor of Oral Medicine, Periodontology and Oral Diagnosis, Minister of Higher Education and Scientific Research, for his dedication to his work and for devoting his time to guide me and simplifying all the problems I have faced in this study.

Dr. Fatma Hamed El-Demerdash, Lecturer of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Ain-Shams University for her generous collaboration, effort and time invested in this study. It is deeply appreciated.

My sincere thanks also go to Prof. Dr. Ahmed Gamal and Dr. Ahmed Abdulaziz, for keeping their doors open and give me all the help and encouragement that they can It is really treasured.

Finally, to get to know you were the most beautiful experience I have ever had, and for that I am eternally thankful to all and every one of you.

Mohammed Omar

Dedication

This manuscript is dedicated to all of the people who have supported and encouraged me throughout my life. To my mother and father, I am eternally grateful for the sacrifices that you both endured to allow me to pursue my goals. None of this would have been possible without your guidance, love, and support. Thanks to my aunt and my grandmother for your unconditional support and encouragement. Thank you all for your never-ending love and support and for the joy that you bring to each day of my life. I love each and every one of you and lam eternally grateful to have such a wonderful family. Special thanks to my dear friends for much support through these years. Last but not least, I would like to dedicate this project to my injured country (Yemen) and to my second home (Egypt) the place where I spent three amazing years that I will never forget.

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	v
Introduction	1
Review of Literature	10
Aim of the Study	68
Materials and Methods	69
Results	85
Case Presentation	102
Discussion	121
Conclusion	128
Recommendations	129
Summary	130
References	132
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	PES index	78
Table (2):	Age distribution of the studied groups	85
Table (3):	Sex distribution of the studied groups	86
Table (4):	Distribution of the studied groups acco	_
Table (5) :	Distribution of the studied groups according and post-operative gingival biotype	_
Table (6):	The Pink Esthetic score assessment studied groups	
Table (7) :	The detailed values of the Pink Esthet for the studied groups	
Table (8):	Radiographic total horizontal evaluate baseline compared to that after 6 months implantation and ridge alteration	onths of
Table (9) :	Radiographic vertical evaluation at compared to that after 6 monimplantation and ridge alteration	iths of
Table (10):	Radiographic bone density at compared to that after 6 monimplantation in both groups	iths of
Table (11):	The rate of success of implantation studied groups	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	PES score assessment	78
Figure (2):	Land marker	80
Figure (3):	Horizontal evaluation technique	81
Figure (4):	Vertical evaluation technique	82
Figure (5):	Bone density evaluation technique	83
Figure (6):	The mean age among the studied group	s 85
Figure (7):	Sex distribution among the studied grou	86
Figure (8):	Sex distribution among the studied grou	ups 87
Figure (9):	Gingival biotype among the studied gro	ups 88
Figure (10):	The pink esthetic score assessment as studied groups.	_
Figure (11):	Items of the Pink Esthetic score ar studied groups	_
Figure (12):	Radiographic total horizontal evalues baseline compared to that after 6 m implantation in group A	onths of
Figure (13):	Radiographic total horizontal evalues baseline compared to that after 6 m implantation in group B	onths of
Figure (14):	Radiographic ridge alteration for he evaluation in group A versus group B	
Figure (15):	Radiographic vertical evaluation at compared to that after 6 months of impin group A	olantation

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (16):	Radiographic vertical evaluation a compared to that after 6 months of in group B	plantation
Figure (17):	Radiographic ridge alteration for evaluation in group A versus group B.	
Figure (18):	Radiographic bone density evaluation	in group A 99
Figure (19):	Radiographic bone density evaluation	in group B 99
Figure (20):	Radiographic bone density evaluation groups	
Figure (21):	The rate of successful tooth implantat groups	
Figure (22):	Case 1	102
Figure (23):	Case 2	106
Figure (24):	Prosthetic Steps	110
Figure (25):	Horizontal evaluation of control case	113
Figure (26):	Vertical evaluation of control case	113
Figure (27):	Bone density of control case	114
Figure (28):	Horizontal evaluation of control case	115
Figure (29):	Vertical evaluation of control case	115
Figure (30):	Bone density of control case	116
Figure (31):	Horizontal evaluation of study case	117
Figure (32):	Vertical evaluation of study case	117
Figure (33):	Bone density of study case	118

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (34):	Horizontal evaluation of study case	119
Figure (35):	Vertical evaluation of study case	119
Figure (36):	Bone density of study case	120

List of Abbreviations

Abb. Full term

ABBAnorganic Bovine Bone
ALPAlkaline Phosphatase
A-PRFAdvanced Platelet Rich Fibrin
ASAAmerican Association of Anesthesiologists
BCPBiphasic Calcium Phosphate
BICBone To Implant Contact
BMPBone Morphogenic Protein
BPBMBovine Porous Bone Mineral
CALClinical Attachment Loss
CaPCalcium Phosphate
CBCTCone Beam Computed Tomography
CHACarbonate Hydroxyapatite
DBBM Deproteinized Bovine Bone Mineral
EGF Epidermal Growth Factor
FDBAFreeze-Dried Bone Allograft
FDPFibrinogen Degradation Products
FGFFibroblast Growth Factor
GBGingival Biotype
GBRGuided Bone Regeneration
GFGrowth Factors
GTRGuided Tissue Regeneration
HAHydroxyapatite
HDD Horizontal defect dimension
HEMAHydroxyethylmethacrylate
HG Horizontal Gap
HGFHepatocyte Growth Factor
HUHounsfield unit
IGFInsulin-like Growth Factor
IIPImmediate Implant Placement

List of Abbreviations (Cont...)

Full term Abb. i-PRF......Injectable Platelet Rich Fibrin LBP.....Labial Bone Plate MMP-8......Matrix Metalloproteinase's -8 MMP-9..... Matrix Metalloproteinase's -9 MSCs Mesenchymal Stem Cells NBR...... Natural Bone Regeneration OFD Open Flap Debridement PC......Platelet concentrates PDGF...... Platelet-Derived Growth Factor PES......Pink esthetic score PMMA......Polymethylmethacrylate PPD Probing Pocket Depths PRF......Platelet Rich Fibrin PRGF......Platelet Rich in Growth Factors PRP......Platelet rich Plasma SBSSynthetic Bone Substitute TGF...... Transforming Growth Factor T-PRF Titanium Platelet Rich Fibrin VEGF...... Vascular Endothelial Growth Factor α -TCP......Alpha Tricalcium Phosphate

β-TCP..... Beta Tricalcium Phosphate

Introduction

yound healing in post extraction socket is a distinctive process as resorption follows which may lead to many prosthetic difficulties regarding the replacement of a tooth. Extraction socket is characterized by marked bone loss of the socket bony wall in the horizontal plane, which is also escorted by loss of vertical height, the majority of this bone loss occurs during the first year after extraction, and one third of this total bone loss occurs during the first three months. For this reason, applying socket augmentation to preserve the socket immediately after tooth extraction is recommended and has a great result on the functional and aesthetic outcomes (Guglielmotti, 1985; Cardaropoli et al.,, 2003; Hayacibara et al.,, 2005; Trombelli et al.,, 2008; Clementini, 2013).

Immediate implant placement in the post extraction socket has given implant dentistry the opportunity to ascertain preferable and faster functional results, this approach is a routine surgical procedure that has been utilized since 1980s. Immediate implant placement is referred to the placement of an implant into a tooth socket concurrently with the extraction. With this procedure the number of surgical procedures a patient would undergo are markedly reduced as well as the overall treatment time as the socket healing and implant osseointegration occur concurrently (Wagenberg and Ginsburg, 2001; Chen et al.,, 2009; Khzam et al.,, 2015).

Many recent studies have focused on treatment outcome of implant therapy performed in the esthetic zone. Placement of dental implant in the esthetic zone is a technique sensitive procedure with little room of error. Yet

challenge remains in many cases. Inadequate bone availability for implant placement and optimal esthetic outcomes are common issue facing clinicians. However, immediate implant with certain cases cannot be placed and hard and/or soft tissue augmentation is required first so that optimum aesthetics can be achieved (Al-Sabbagh 2006; Jivraj and Chee, 2006).

One of the problems that might be encountered with immediate implantation is the unpredictable aesthetic outcome. The residual labial bone plate (LBP), although it might be present and intact at the time of tooth extraction, will be subjected to bone remodeling whose ultimate outcome is difficult to portend because of the great individual variability. This can result, in some instances to a poor aesthetic outcome which is of a great concern for some patients. To overcome such problem, special attention should be paid to the horizontal gap that might exist between the implant and the bony socket walls. A lot of studies have showed that filling of the gap with bone substitutes might modify the pattern of hard tissue modeling (Pietrokovski and Massler, 1967; Quirynen et al.,, 2007; Qahash et al., 2008; Barone et al., 2011; Bashara et al., 2012; Degidi et al.,, 2012).

To promote tissue regeneration growth factors have been used as therapeutic agent because of their expression during different phases of tissue healing. The osseointegration of dental implant can be improved and accelerated by increasing the regenerative capacity of surrounding tissues with appropriate stimuli (Anitua et al., 2006; DuRaine et al., 2011).

In 1972 fibrin glue had been used for nerve repair. This glue depended on concentration source of human fibrinogen. In 1980s was found the importance of platelet as a source of autologous growth factors

that stimulate angiogenesis, collagen synthesis and cell migration and proliferation. For long time it has been known that fibrin clot and platelets have haemostatic and tissue repairing effect (Knighton et al. 1986; Marx et al. 1998; Ness 1990).

Whitman et al., described autologous concentration of human platelets contained in small volume of plasma called, Platelet-rich plasma (PRP), platelet-rich concentrate and autologous platelet gel which consequently had been used instead of fibrin glue (Whitman et al.,, 1997). A minor variation of PRP was developed by Anitua et al., in 1999 which have no white blood cells and completely autologous called Plasma rich in growth factor (PRGF) (Anitua et al.,, 1999).

A second-generation platelet concentrate has been developed in France by *Choukroun* called Platelet Rich Fibrin (PRF). This technique requires neither anticoagulant nor bovine thrombin compared to cPRP (concentrated Platelet-rich plasma) (Dohan et al., 2006). Recently a new protocol has been developed by Choukroun during the Syfac (International Symposium on Growth Factors) meeting in Paris, injectable Platelet rich fibrin (i-PRF) a liquid and injectable with no anticoagulant neither an additive (Choukroun, 2014).

This study focused upon the effect of i-PRF when mixed with bone graft on the buccal bone plate thickness around immediate implant placement.