PHYSIOLOGICAL, MOLECULAR AND BIOCHEMICAL STUDIES ON EGYPTIAN MICROALGAE ISOLATES FOR POTENTIAL USE IN BIODIESEL PRODUCTION

By

Reham Mohamed Naguib Ahmed Ali EL-Bahbohy

B.Sc. Agric. Sci. (International Agric.), Fac. Agric., Cairo Univ., 2007 M.Sc. Agric. Sci. (Plant Physiology), Fac. Agric., Cairo Univ., 2015

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Plant Physiology)

Department of Agric. Botany
Plant Physiology Section
Faculty of Agriculture
Cairo University
EGYPT

APPROVAL SHEET

PHYSIOLOGICAL, MOLECULAR AND BIOCHEMICAL STUDIES ON EGYPTIAN MICROALGAE ISOLATES FOR POTENTIAL USE IN BIODIESEL PRODUCTION

Ph.D. Thesis
In
Agric. Sci. (Plant Physiology)

By

Reham Mohamed Naguib Ahmed Ali EL-Bahbohy

B.Sc. Agric. Sci. (International Agric.), Fac. Agric., Cairo Univ., 2007 M.Sc. Agric. Sci. (Plant Physiology), Fac. Agric., Cairo Univ., 2015

APPROVAL COMMITTEE

Dr. FEKRY MOHAMED ABDEL AAL GHAZAL	
Professor of Microbiology, Soils, Water and Environ. Res. Inst., (ARC)	
Dr. NEVEEN BAHAA EL-DIN TALAAT	
Professor of Plant Physiology, Fac. Agric., Cairo University	
Dr. MOHAMED RAMADAN ABO EL-ELA NESEIM	
Professor of Plant Physiology, Fac. Agric., Cairo University	

Date: / / 2019

SUPERVISION SHEET

PHYSIOLOGICAL, MOLECULAR AND BIOCHEMICAL STUDIES ON EGYPTIAN MICROALGAE ISOLATES FOR POTENTIAL USE IN BIODIESEL PRODUCTION

Ph.D. Thesis In Agric. Sci. (Plant Physiology)

 $\mathbf{B}\mathbf{v}$

Reham Mohamed Naguib Ahmed Ali EL-Bahbohy

B.Sc. Agric. Sci. (International Agric.), Fac. Agric., Cairo Univ., 2007 M.Sc. Agric. Sci. (Plant Physiology), Fac. Agric., Cairo Univ., 2015

SUPERVISION COMMITTEE

LATE Dr. NAGUIBA KAMEL EL-GHAMRAWY

Professor of Plant Physiology, Fac. Agric., Cairo University

Dr. MOHAMED RAMADAN ABO EL-ELA NESEIM

Professor of Plant Physiology, Fac. Agric., Cairo University

Dr. ESSAM ABDEL MOATY DARWISH

Associate Professor of Plant Physiology Fac. Agric., Cairo University

Name of Candidate: Reham Mohamed Naguib Ahmed Ali El-Bahbohy Degree: Ph.D.

Title of Thesis: Physiological, Molecular and Biochemical Studies on Egyptian Microalgae isolates for

Potential Use in Biodiesel Production

Supervisors: Dr. Naguiba Kamel El-Ghamrawy

Dr. Mohamed Ramadan Abo El-Ela Neseim

Dr. Essam Abdel Moaty Darwish

Department: Agricultural Botany Branch: Plant Physiology

Approval: / /

ABSTRACT

Blue-green algae (cyanobacteria) have all the potential to act as a platform for the development of fourth-generation biofuel. Nevertheless, the diversity and eco-physiology of blue-green algae in northern African countries and their biofuel production potential is still understudied. The aim of this thesis was screening eight isolates of blue-green algae belonging to genera of Anabaena (A. circinalis, A. fertilissima, A. sphaerica, A. variabilis, and A. sp.) and Nostoc (N. commune, N. muscorum, and N. sp.) for high lipid productivity, and to select the best isolate to further increase its lipid induction using different treatments. The results revealed that A. sphaerica was the superior isolate with good fatty acids profile and with the highest lipids productivity which was attributed to high specific growth rate and high lipid concentration. A. sphaerica was then subjected to different treatments including culture operation mode, media duplicity as well as different nutrition strategies in terms of nutrients supplementation or elimination (i.e. two stages mode of nutrition). All studied parameters of A. sphaerica were found to be best induced by NO₃ or PO₄ elimination in two stages mode of nutrition, as well as under 60µM FeCl₃ supplementation. The environmental adaptability of A. sphaerica for lipid production under single or/and combined salt (50, 75, and 100 mM NaCl) and mild heat stress (35 °C) was evaluated, and it was found that lipids productivity was best induced under all studied NaCl concentrations, while the 35 °C treatment slightly increased both lipid yield and lipids % of A. sphaerica. When NaCl was combined with 35 °C, all parameters were increased, although to a lower degree than in a single factor. The combined effects of best studied treatments (+50 mM NaCl, -NO₃, -P, +60 µM FeCl₃) were evaluated for lipids induction including double, triple as well as quadruple combinations. Generally, triple and quadruple combinations decreased most parameters, whereas –P and +60 µM FeCl₃ in a double combination was the only treatment that synergistically induced lipids as compared to single effect of each factor alone. Finally, identification of the A. sphaerica strain was based on molecular studies on the 16S rDNA sequence of A. sphaerica which was submitted to the NCBI GenBank database (accession No. MK271089) and the strain was named Anabaena sphaerica FSR1. Estimated biodiesel properties of Anabaena sphaerica FSR1 calculated from 5 previous treatments, i.e. +60 µM FeCl₃, -NO₃, +50 mM NaCl, +Fe -P, and +Na+Fe-P were apparently found within the range of the biodiesel standards EN 14213 and EN 14214 (Europe), especially ASTM D6751-08 (United States). We recommend opting for the treatment that induces the highest lipid productivity to be more economically feasible, which was found to be the addition of 50 mM NaCl to the BG-11₀ media. Future studies involving this valuable strain are recommended to screen for useful bio products as well as assessing the success of its open air culturing.

Key words: blue-green algae, Anabaena sphaerica, nutrients starvation, stress, 16S rRNA, biodiesel.

اسم الطالب: ريهام محمد نجيب أحمد على البحبوحي الدرجة: دكتوراه الفلسفة

عنوان الرسالة: در اسات فسيولوجية جزيئية و حيوية على عز لات الطحالب المصرية لاستخدامها في انتاج الوقود الحيوي.

المشرفون: دكتور: نجيبة كامل الغمراوي

دكتور: محمد رمضان ابو العلا نسيم دكتور: عصام عبد المعطى درويش

قسم: النبات الزراعي فرع: فسيولوجيا النبات تاريخ منح الدرجة: / /

لمستخلص العربي

تمتلك الطحالب الخضراء المزرقة (cyanobacteria) القدرة على العمل كمنصة لتطوير الجيل الرابع من الوقود الحيوي. ومع ذلك فإن الدراسات التي تهتم بالتنوع والفيزيولوجيا البيئية للطحالب الخضراء المزرقة في بلدان شمال أفريقيا وإمكانية إنتاجها للوقود الحيوى ما زالت قليلة جدا. الهدف من هذه الرسالة هو دراسة ثمانية عزلات من الطحالب الخضراء المزرقة التي تنتمي إلى أجناس أنابينا (A. circinalis, A. fertilissima, A. sphaerica, A. variabilis, و نوستوك (N. commune, N. muscorum, N. sp.) من خلال دراسة إنتاجيتها للدهون، واختيار أفضل عزلة منهم ثم زيادة إنتاجية الدهون في هذه العزلة باستخدام بعض المعاملات المختلفة. أو ضحت النتائج أن A. sphaerica كانت العزلة الأفضل من حيث تفريد الدهون و الأعلى من حيث إنتاجية الدهون والتي كانت تعزى إلى أسرع معدل نمو وأعلى محتوى من الدهون بعد ذلك تم إخضاع A. sphaerica لمعاملات مختلفة بما في ذلك طريقة تنميتها على بيئة مضاعفة في تركيز الأملاح المغذية، بالإضافة إلى استخدام استراتيجيات التغذية المختلفة من حيث تركيز بعض العناصر الغذائية أو إزالتها (التغذية على مرحلتين). وقد أشارت جميع القياسات لل $A.\ sphaerica زيادتها باستخدام معاملات إزالة <math>NO_3$ أو PO_4 في معاملة التغذية على مرحلتين، وكذلك في معاملة إضافة تركيز ٦٠ ميكرومولر من FeCl₃. كذلك تم تقييم القدرة لل A. sphaerica على التكيف البيئي وقدرتها على إنتاج الدهون وذلك بمعاملتها بتركيزات مختلفة بملح كلوريد الصوديوم (٥٠ ، ٧٥ ، ١٠٠ مللي مولر) وإجهاد حراري طفيف (٣٥ درجة مئوية) منفر دين أو مجتمعين. وقد وجد أن أفضل إنتاجية للدهون تحدث تحت جميع تركيزات كلوريد الصوديوم المدروسة ، في حين أن معاملة ٣٥ درجة مئوية أحدثت زيادة طفيفة في نسبة الدهون ٪ ل A. sphaerica. و عندما تم الجمع بين معاملات كلوريد الصوديوم و ٣٥ درجة مئوية، حدثت زيادة في جميع القياسات ولكن بدرجة أقل من تأثير العوامل منفردة. تم أيضا تقييم التأثيرات لأفضل المعاملات (+٠٠ مللي مولر P-، NO، ، NaCl، أو ٢٠+ ميكرومولر (FeCl، في زيادة تراكم الدهون، وذلك من خلال المعاملات المزدوجة، الثلاثية أو الرباعية. وبشكل عام قللت المعاملات الثلاثية والرباعية معظم القياسات، في حين أن المعاملة المزدوجة –P + ٠٠ ميكرومولر ¸FeCl كانت لها التأثير التضافري على زيادة تراكم الدهون مقارنة بالتأثيرات الفردية لكل منهما. وفي النهاية تم تحديد سلالة A. sphaerica استنادًا إلى دراسات جزيئية على تسلسل rDNA لـ 16S من A. sphaerica والذي تم تقديمه إلى قاعدة بيانات NCBI GenBank (رقم الانضمام (MK271089) وتم تحديد السلالة ب Anabaena sphaerica FSR1 أظهرت خواص الوقود الحيوي المقدرة لل Anabaena sphaerica FSR1 أنها كانت في نطاق المعايير العالمية للوقود الحيويEN 14213 و EN 14214 (اوروبا)، و خاصةً ASTM D6751_08 (الولايات المتحدة). ولذلك نوصبي باختيار المعاملة التي تحفز أعلى إنتاجية للدهون لتكون أكثر جدوى من الناحية الاقتصادية و هي إضافة ٥٠ مللي مولر كلوريد الصوديوم إلى بيئة BG-11_{0.} و كذلك توصىي النتائج بإجراء دراسات مستقبلية على هذه السلالة القيّمة من أجل فحص المنتجات الحيوية المفيدة بالإضافة إلى تقييم نجاح زراعتها في البيئة الطبيعية

الكلمات الدالة: ،الطحالب الخضراء المزرقة، Anabaena sphaerica، نقص العناصر، اجهاد بيئي، 16SrRNA، الوقود الحيوي.

DEDICATION

Dreams and dedication are a powerful combination. The words were found to express what is inside...

Thanksgiving and appreciation and feelings of love, sincerity and gratitude. I dedicate this thesis and my success to my Sweetheart, to my friend of struggle and success, to my love and life, to Shady.

The love of a family is life's greatest blessing. Family is experience of love and support and patience. With love I dedicate this thesis to Dad, Mom, Ahmed, Waleed, Arwa, Rowan, Hamza, and Cuty Loly.

Nothing in this world can express my love and my immense thanks to all of you.

Together we have it all!!

ACKNOWLEDGEMENT

In the Name of Allah, the Most Beneficent, the Most Merciful. All the praises and thanks be to Allah, all thankful belong to ALLAH who makes everything possible.

My deepest prayers for the late **Dr. Naguiba El-Ghamrawy**, Late Prof. of Plant Physiology, Plant Physiology Department, Faculty of Agriculture, Cairo University, may Allah rest her soul. I feel immense gratitude for her support during the beginning of this thesis and her friendly advices and encouragement.

I wish to express my deep appreciation and profound gratitude to **Prof. Dr.**Mohamed Ramadan, Plant Physiology Department, Faculty of Agriculture, Cairo University, for his great help and dedication in and supervising me, his moral support during this work, close guidance, creative supervision and valuable experience and discussions.

All respect and thanks for **Dr. Essam Darwish** Associate Prof. of Plant Physiology, Faculty of Agriculture, Cairo University for supervising the work as well as his continual valuable guidance during the work and providing a lot of required facilities to accomplish the analysis and experiments of this thesis.

Sincere gratitude is also due to **Prof. Dr. Fekry Mohamed Ghazal**, Prof. of Soil Microbiology, Soil Microbiology Department, Soils, Water and Environment Res. Inst., Agricultural Research Center, for his continual valuable guidance during the work and his constructive criticism during the development of this thesis. I would like to thank him for his patience while training me to think as an algologist, and for encouraging me when I was facing difficulties.

Special thanks are due to **Dr. Shady Abdel Mottaleb** Lecturer of Plant Physiology, Faculty of Agriculture, Cairo University, for his valuable help and scientific support, along my study, that I can't forget it. Also, all appreciation and respect for his advices, guidance and Spiritual support with each step starting from planning the PhD plan and suggesting the thesis work till finishing this fruitful thesis.

Deep thanks to **Dr. Manal Farouk** Researcher at Agricultural Genetic Engeneering Research Institute (AGERI), Agricultural Research Center, for her great help and providing facilities to accomplish a required molecular analysis of A. sphaerica isolate.

Deep thanks to **Prof. Dr. Essam Agamy** Vice Dean of Postgraduate and Research, and **Dr. Ayman Yehia Amin**, Prof. of Plant Physiology, Faculty of Agriculture, Cairo University for their great help and providing facilities to accomplish required biochemical analysis in my thesis.

LIST OF ABBREVIATIONS AND INITIALS

Abbreviation Meaning of abbreviation

ANOVA Analysis of variance BG-11 Blue-Green 11 Medium

BG-11₀ Nitrogen-free Blue-Green 11 Medium
BLAST Basic Local Alignment Search Tool

bp Base pair Chl-a Chlorophyll-a

CTAB Cetyltrimethylammounium bromide
DHA Docosahexaenoic acid (C22:6)
EPA Eicosapentaenoic acid (C20:5)
FAME Fatty Acid Methyl Ester

K' Growth rate

MLDP Major lipid droplet protein

mM Milli molar

NCBI National Center for Biotechnology Information

nm nanometer No. Number

O.D Optical Density

PAR Photosynthetically active radiation

PCR Polymerase chain reaction POS Primary oleaginous species

PS I Photosystem I PS II Photosystem II

ROS Reactive oxygen species
SOS Secondary oleaginous species

TAG Triacylglyceride

TEM Transmission electron microscopy

UV Ultra violet

μ Specific growth rate

 $\mu E m^{-2} s^{-1}$ Micro Einstein /metre²/second

μM Micro molar