

FACTORS AFFECTING THE PREPARATION OF ALUMINUM FLUORIDE BY THE WET PROCESS FROM FLUOSILICIC ACID PRODUCED FROM PHOSPHATE FERTILIZERS INDUSTRY

By

Salma Tarek Abd El Wahab Abd El Azeem

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
CHEMICAL ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

FACTORS AFFECTING THE PREPARATION OF ALUMINUM FLUORIDE BY THE WET PROCESS FROM FLUOSILICIC ACID PRODUCED FROM PHOSPHATE FERTILIZERS INDUSTRY

By

Salma Tarek Abd El Wahab Abd El Azeem

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in

CHEMICAL ENGINEERING

Under the Supervision of

Prof. Dr. Magdi Fouad Abadir Prof. Dr. Ibrahim Ahmed Ibrahim

Professor of Chemical Engineering Chemical engineering Department Faculty of Engineering, Cairo University Professor of Chemistry
Minerals Technology Division
Central Metallurgical Research and
Development Institute (CMRDI)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

FACTORS AFFECTING THE PREPARATION OF ALUMINUM FLUORIDE BY THE WET PROCESS FROM FLUOSILICIC ACID PRODUCED FROM PHOSPHATE FERTILIZERS INDUSTRY

By

Salma Tarek Abd El Wahab Abd El Azeem

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in

CHEMICAL ENGINEERING

Approved by the Examining Committee

Prof. Dr. Magdi Fouad Abadir, Thesis Main Advisor

Professor of Chemical Engineering, Chemical engineering Department, Faculty of Engineering, Cairo University

Prof. Dr. Ibrahim Ahmed Ibrahim, Advisor

Professor of Chemistry, Minerals Technology Division, Central Metallurgical Research and Development Institute (CMRDI)

Prof. Dr. Hanem Abd El Rahman Sibak, Internal Examiner Professor of Chemical Engineering, Chemical engineering Department, Faculty of Engineering, Cairo University

Prof. Dr. Adli Abdalla Hanna, External Examiner

Professor of Inorganic Chemistry National Research Center (NRC)

> FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

Engineer's Name: Salma Tarek Abd El Wahab Abd El Azeem

Date of Birth: 1/6/1992 **Nationality:** Egyptian

E-mail: Salmatarek1992@gmail.com

Phone: 002 01008608262

Address: 96c Hadabet El Ahram- Mankwraa gate –Giza, Egypt

Registration Date: 1/10/2014 **Awarding Date:** / /2019

Degree: Master of Science **Department:** Chemical Engineering

Supervisors:

Prof. Dr. Magdi Fouad Abadir Prof. Dr. Ibrahim Ahmed Ibrahim

Examiners:

Prof. Dr. Adli Abdalla Hanna (External examiner)

Professor of Inorganic Chemistry, National Research Center (NRC)

Prof. Dr. Hanem Abd El Rahman Sibak (Internal examiner)

Prof. Dr. Magdi Fouad Abadir (Thesis main advisor)

Prof. Dr. Ibrahim Ahmed Ibrahim (Advisor)

Professor of Chemistry, Minerals Technology Division,

Central Metallurgical Research and Development Institute (CMRDI)

Title of Thesis:

FACTORS AFFECTING THE PREPARATION OF ALUMINUM FLUORIDE BY THE WET PROCESS FROM FLUOSILICIC ACID PRODUCED FROM PHOSPHATE FERTILIZERS INDUSTRY

Key Words:

Aluminum fluoride, fluosilicic acid, phosphate fertilizers industry, kalabsha kaolin, leaching kinetics

Summary:

This thesis deals with studying some of the factors affecting the preparation of anhydrous aluminum fluoride fit for several uses by the wet process. Different parameters were optimized along the preparation scheme, namely; kaolin particle size, acid concentration, temperature, reaction time and kaolin to acid ratio. Leaching reaction kinetics was studied using the isothermal technique and two models were found to best fit the obtained data, namely, the unreacted core model (diffusion through product layer controlled) and the progressive reaction model. Filtration process was performed under constant pressure using both vacuum and pressure filtration whereby the specific cake and filter medium resistances were obtained. Crystallization process was performed using the evaporative method with optimization of time and seeds type. Finally, the calcination step was carried out to obtain the final anhydrous product with purity more than 98%.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Salma Tarek Abd El Wahab Abd El Azeem Date:

Signature:

Acknowledgements

First of all I want to thank God Almighty, who made this journey possible and created the science that we've attempted to uncover. Without Him I am nothing.

I hereby say a big thank you to my advisors. Starting with my Principal supervisor, prof. Dr.Magdi Abadir, for believing in me and offering an unflagging support all the way and the depths of knowledge and experience shared, and to my Co-supervisor, Prof. Ibrahim Ahmed For his kind supervision, encouragement, and co-operation in the hours of need. My sincere gratitude to Dr. Sabah Abdelbasir for the wise insight into the interpretation of results and data analysis. I am deeply grateful for all your help.

I am very thankful to El Nasr Company for intermediate chemicals (NCIC) for their cooperation providing all the data needed for the work completion. And the financial support from the Academy of Scientific Research and Technology (ASRT). This work would not have been possible without your funding. I also want to thank members of my research department for facilitating the whole performed tests. Thanks to my lab colleagues for your continuous help.

Finally, I want to thank my family; my parents, my brother and sister. Your spiritual, emotional and morale support that saw me through was priceless.

Table of Contents

LIST OF TABLES	VI
LIST OF FIGURES	VII
ABBREVIATIONS	IX
LIST OF SYMBOLS	X
ABSTRACT	XI
CHAPTER 1: INTRODUCTION	1
Aim of the work	3
CHAPTER 2 : LITERATURE REVIEW	4
2.1. Introduction	4
2.2. Aluminum fluoride	5
2.2.1. Role of Aluminum fluoride in Aluminum Smelters	6
2.2.1.1. Aluminum Smelting	6
2.2.1.2. Aluminum fluoride in smelters	7
2.2.2. Aluminum fluoride production Capacity	8
2.2.3. Aluminum fluoride crystal structure	10
2.2.4 Aluminum fluoride production technologies	11
2.2.4.1. Pyrometallurigical methods	12
I. Thermal decomposition methods	12
II. Sublimation methods	12
2.2.4.2. Hydrometallurgical methods	12
I. Wet process (Chemie-Linz process)	13
II. Dry process (Tennessee Process)	14
2.2.4.3. Other methods	16
I. Using Hydrogen Fluoride	16
II. Using Ammonium Fluoride	17
III. Using Uranium Fluoride	17
IV. Using Aluminum Hydroxy Fluoride hydrate	17
2.3. Raw materials for the production of AlF ₃ by the wet process	17
2.3.1 Aluminum sources	17
2.3.1.1 Aluminum oxide	17

	2.3.1.2 Kaolin	. 18
	(I) Occurrence in Egypt	. 18
	(II) Kaolin ores composition	. 18
	(III) Uses of kaolin	. 19
	(IV) Mineralogical composition of kaolin	. 19
	(V) Physical properties of kaolin	. 20
	(V1) Chemical properties of kaolin	. 20
	(VII) Kaolin refining processes	. 21
	Air flotation (dry process)	. 21
	• The wet process	. 22
	2.3.2 Fluosilicic acid	. 22
2	.4. Kinetics of solid – liquid reactions	. 23
	2.4.1 Introduction	. 23
	2.4.2 The progressive reaction model	. 23
	2.4.3 The shrinking core model	. 24
	2.4.3.1 Diffusion through liquid film controlling	. 25
	2.4.3.2 Chemical Reaction Controlling	. 25
	2.4.3.3 Diffusion through product (ash) layer controlling	. 25
2	.5 Elements of cake filtration	. 25
2	.6. Nucleation and grain growth	. 27
	Crystallization of a luminum fluoride	. 28
СН	APTER 3 : EXPERIMENTAL WORK	. 29
3	.1. Materials	. 30
	3.1.1. Fluosilic ic acid	. 30
	3.1.2. Kaolin	. 30
3	.2. Experimental Procedures.	. 33
	3.2.1. Leaching of kaolin	. 33
	3.2.2. Filtration step	. 34
	3.2.3. Crystallization	. 34
	3.2.4. The drying step	. 35
3	3 Characterization	. 36

3.4. Calculations	36
CHAPTER 4: RESULTS AND DISCUSSION	37
4.1. The Leaching process.	37
4.1.1. Effect of kaolin particle size	37
4.1.2. Effect of acid concentration	38
4.1.3. Effect of temperature	39
4.1.4. Effect of time	40
4.1.5. Effect of stoichiometric ratio.	41
4.1.6. Kinetics of the leaching process	43
I. Un-reacted core models:	44
a. Reaction at interface controls:	44
b. Diffusion through product layer controls	45
II. Progressive reaction model:	47
4.2 Filtration of the produced suspension	49
4.2.1 Results of vacuum filtration	49
4.2.2 Results of pressure filtration	52
4.3 Crystallization step	53
4.3.1. Results for the crystallization of aluminum fluoride	53
4.3.2. Crystallization time	54
4.3.3. Effect of type of seeds	56
4.4 The calcination process	58
CHAPTER 5 : CONCLUSIONS AND RECOMMENDATIONS	63
REFERENCES	65
Appendix	73

LIST OF TABLES

Table 2-1: Aluminum fluoride Physico-chemical properties	5
Table 2-2: Aluminum fluoride typical properties	6
Table 2-3: Major western producers of AlF ₃	8
Table 2-4: Some physico-chemical properties of Aluminum fluoride produced by the dry	process 14
Table 2-5: Main reserves of Egyptian kaolin ores	18
Table 2-6: Common kaolin ores compositions	19
Table 2-7: Common properties of kaolin	20
Table 2-8: Properties of Fluosilicic acid	22
Table 3-1: Chemical analysis of Fluosilicic acid (H ₂ SiF ₆)	30
Table 3-2: Chemical composition of Kalabsha kaolin first sample	31
Table 3-3: XRF analysis of second sample of Kalabsha Kaolin	32
Table 4-1: Effect of kaolin particle size on AlF ₃ concentration and Al ₂ O ₃ recovery	37
Table 4-2: Parameters of curves obtained in Figure (4-8)	45
Table 4-3: Parameters of curves obtained in Figure (4-9)	45
Table 4-4: Parameters of curves obtained from Figure (4-11)	47
Table 4-5: Slopes and intercepts at different applied pressures	50
Table 4-6: Values of α and R_m at different applied pressures	51
Table 4-7: Results of Pressure filtration	52
Table 4-8: Comparison of experimental and predicted filtration time	53
Table 4-9: Effect of seeds type on crystals yield	57
Table 4-10: Effect of seeds type on weight loss on calcination	60
Table 4-11: XRF of the obtained final product	62

LIST OF FIGURES

Figure 1-1: Amount of raw materials needed for production of 1 ton of aluminum	1
Figure 1-2: Simplified block flow diagram for AlF ₃ production by the wet process	2
Figure 2-1: Simplified block flow diagram of the Wet process for phosphoric acid production	4
Figure 2-2: Aluminum Smelting cell "Hall-Hèroult process"	7
Figure 2-3: World aluminum fluoride production, 2002-2011(Ktons)	9
Figure 2-4: (a) World production of AlF ₃ in 2011, (b) Aluminum fluoride annual production an	ıd
consumption till 2010	10
Figure 2-5: AIF ₃ structure	11
Figure 2-6: AIF ₃ Preparation Techniques	11
Figure 2-7: Simplified flow sheet for the Production of AlF ₃ by the Wet Process (After AD Pro	cess
Strategy)	13
Figure 2-8: Simplified block Flow diagram of AlF ₃ production by the dry fluorspar process	15
Figure 2-9: Simplified flow sheet for the Production of dry HF by the dry FSA process (After A	'D
Process Strategy)	16
Figure 2-10: Crystal structure of pure kaolinite	20
Figure 2-11: Adsorption of cations on kaolin surface	21
Figure 2-12: Progressive-Conversion Mode1	24
Figure 2-13: Schematic Figure for AIF ₃ crystallization under different temperatures	28
Figure 3-1: Schematic diagram of Experimental work	29
Figure 3-2: Wet Particle size distribution of second (ground) kaolin sample	31
Figure 3-3: XRD pattern of the second sample of Kalabsha Kaolin	32
Figure 3-4: Schematic diagram of the used leaching system	33
Figure 3-5: a) Laboratory Buchner funnel system, b) Semi-pilot pressure vessel	34
Figure 3-6: Crystallization system	35
Figure 3-7: a) Heraeus shelf drier, b) NeyVulcan Muffle furnace	35
Figure 4-1: a) Effect of kaolin particle size on AlF ₃ concentration, b) Effect of kaolin particle s	size
on Al_2O_3 recovery	38
Figure 4-2: Effect acid concentration on AlF ₃ concentration and on Al ₂ O ₃ recovery	39
Figure 4-3: Effect of reaction temperature on AIF ₃ concentration and on Al ₂ O ₃ recovery	40
Figure 4-4: Effect of reaction time on AlF ₃ concentration and Al ₂ O ₃ recovery	41
Figure 4-5: Effect of stoichiometric ratio on AlF ₃ concentration and on Al ₂ O ₃ recovery	42
Figure 4-6: Effect of stoichiometric ratio on SiO ₂ concentration	43
Figure 4-7: Effect of reaction temperature on AIF ₃ conversion against time	43
Figure 4-8: Kinetics plots assuming surface reaction controlling	44
Figure 4-9: Kinetic plots assuming diffusion through product layer controlling	46
Figure 4-10: Arrhenius plot assuming diffusion through product layer controlling	46
Figure 4-11: Kinetic plots according to the progressive reaction model	48
Figure 4-12: Calculation of reaction rate constants for the progressive reaction model	48
Figure 4-13: Arrhenius plot of reaction assuming progressive reaction model applying	49
Figure 4-14: Volume of filtrate as function of time for vacuum filtration	50

Figure 4-15: Linearized filtration plots for vacuum filtration	. 51
Figure 4-16: Plot for the calculation of compressibility coefficient of cake	. 52
Figure 4-17: Percent crystallization of AlF ₃ .3H ₂ O as function of time	. 55
Figure 4-18: Rate of crystallization of AlF ₃ .3H ₂ O as function of time	. 55
Figure 4-19: XRD pattern of AIF ₃ .3H ₂ O dried crystals for all crystallization periods	. 56
Figure 4-20: XRD of obtained phases a) Without seeding, b) Using 50% AlF ₃ .3H ₂ O seeds, c) Us	ing
Anhydrous HBD AlF ₃	. 57
Figure 4-21: SEM photos for crystals :A) without seeds, B)with AlF ₃ .3H ₂ O Seeds, C) with HBD)
AlF_3	. 58
Figure 4-22: TGA-DTG curves for AlF ₃ .H ₂ O crystals up to 600°C	. 59
Figure 4-23: XRD of calcined samples a) crystals without seeding, b) Crystals using AlF ₃ .3H ₂ O	1
seeds, c) Crystals using HBD AlF ₃ seeds	. 60
Figure 4-24: SEM photos of calcined samples a) crystals without seeding, b) Crystals using	
AlF ₃ .3H ₂ O seeds, c) Crystals using HBD AlF ₃ seeds	. 61

ABBREVIATIONS

AlF₃ Aluminum fluoride

FSA Fluosilicic acid

SiO₂ Silica

LBD Low Bulk Density

HBD High Bulk Density

SSF Sodium Silico Fluoride

HF Hydrofluoric acid

AHF Anhydrous hydrogen fluoride

SSP Single Super Phosphate

DCP Di-Calcium Phosphate

AS Ammonium Sulphate

XRD X-Ray Diffraction

XRF X-Ray Fluorescence

SEM Scanning Electron Microscope

LIST OF SYMBOLS

\boldsymbol{A}	Pre-exponential constant in Arrhenius equation	min ⁻¹
\boldsymbol{A}	Filtration area	m^2
E	Activation energy	J. mol ⁻¹
k	Reaction rate constant	min ⁻¹
R	General gas constant	J. mol ⁻¹ .K ⁻¹
Rm	Filter medium resistance	m^{-1}
T	Temperature	K
t	Time of reaction	min
t	Time of filtration	S
V	Volume of filtrate	m^3
α	Fractional conversion	
α	Average specific cake resistance	m.kg ⁻¹
∆p	Pressure drop in filtration	Pa
μ	Viscosity of filtrate	Pa.s

ABSTRACT

There is a worldwide trend towards sustainable development defined simply as the ability of communities to fit present needs without risking the ability of the new generations to satisfy their future demands. Waste management is considered as a key sector in this development. That is why this point of research acquires its importance as it utilizes Fluosilicic acid, which is a waste of wet phosphoric acid and phosphate fertilizer industry plants to make an added value product "Aluminum fluoride".

Aluminum fluoride has several uses in diverse fields, such as ceramics, welding, and aluminum industry. It has several preparation routes. These routes can be classified in several ways, according to starting materials (source of aluminum or source of fluoride), extracting technique (whether pyrometallurigical or hydrometallurical techniques), or reaction phase (dry or wet process). In this research, the wet process was used. This has been carried out through investigating and optimization every step in the preparation process. This latter takes place mainly through four steps: leaching, filtration, crystallization, and calcination.

Leaching parameters (including kaolin particle size, acid concentration, temperature, time and kaolin to acid stoichiometric ratio) were analyzed to determine their effect on liquor concentration and alumina recovery from which leaching conditions were optimized. The leaching kinetics was studied using different isothermal solid state reaction models culminating in deducing the reaction mechanism. Constant pressure filtration was performed on laboratory-scale and evaluated on semi pilot-scale. From the collected data it was possible to determine process characteristics (filtration rate, specific cake resistance, specific filter medium resistance). Next, a crystallization process was performed and the crystallization efficiency determined by changing two main parameters (time, type of seeds used). Their effects on resulting crystal size, morphology and attained phases were investigated. At last, Calcination was performed in air to obtain anhydrous aluminum fluoride using a traditional muffle furnace at 600°C with 5 °C.min⁻¹ heating rate. The obtained product was investigated and evaluated using X-Ray Diffraction (XRD), X-Ray Fluorescence (XRF), and Scanning Electron Microscope (SEM) to evaluate its phases, composition, size, and morphology.