

Ain Shams University Faculty of Education Physics Department

Study on Positron Annihilation Characteristics with Some Physical Properties of Polyvinyl Alcohol (PVA)/ Polyethylene Glycol (PEG) Composites.

THESIS

Submitted in partial fulfillment of the requirement Doctor Philosophy degree for Teacher Preparation in Science (Nuclear Physics)

By

Dina Mohamed Abd El Maqsoud Abd El Razek

To
Physics Department
Faculty of Education
Ain Shams University

2019

بسم الله الرحمن الرحيم

حدق الله العظيم

MINING MI

Ain Shams University Faculty of Education Physics Department

Researcher Name: Dina Mohamed Abd El Maqsoud Abd El Razek

Title of the thesis: "Study on Positron Annihilation Characteristics with Some Physical Properties of Polyvinyl Alcohol (PVA)/ Polyethylene Glycol (PEG) Composites."

Degree : Doctor Philosophy degree for Teacher Preparation in Science (Nuclear Physics)

Submitted to: Physics Department, Faculty of Education, Ain Shams University

Supervisors:

- 1- Prof. Dr. Mona Mohamed Abd Latif
- 2- Prof. Dr. Ashry Hassan Ashry
- 3- Dr. Ahmed Mohamed Ismail Mohamed
- 4- Dr. Fatma Elsayed Abd El Aziz

<u>Approval Sheet</u>

Title:" Study on Positron Annihilation Characteristics with Some Physical Properties of Polyvinyl Alcohol (PVA)/Polyethylene Glycol (PEG) Composites."

Candidate: Dina Mohamed Abd El Maqsoud Abd El Razek

Degree : Doctor Philosophy degree for Teacher Preparation in Science (Nuclear Physics)

Board of Advisors

Approved by

1. Prof. Dr/ Mona Mohamed Abd Latif Prof. of Nuclear Physics

Prof. of Nuclear Physics
Faculty of Science, Ain Shams University

2. Prof. Dr/ Ashry Hassan Ashry

Prof. of Nuclear physics Faculty of Education, Ain Shams University

3. Dr/ Ahmed Mohamed Ismail Mohamed

Lecturer of Nuclear physics Faculty of Education, Ain Shams University

4. Dr/ Fatma Elsayed Abd El Aziz

Lecturer of Solid physics Faculty of Education, Ain Shams University

Date of presentation: / / 2019

Post graduate studies:

Stamp: / / Date of approval: / / 2019

Approval of Faculty Council: / /2019 Approval of University Council: / /2019

	Page
Acknowledgement	i
List of Tables	iii
List of Figures	iv
Abstract	viii
Summary	xi
<u>Chapter 1</u>	
Theoretical Background and Literature Review	
1.1.Introduction.	1
1.2. Theoretical Background:	4
1.2.1. Positron Annihilation	4
(a) Positron Annihilation Lifetime Spectroscopy (PALS) Theory	5
(b) Positronium Formation (Ps)	6
(c) The Free-Volume and Hole Theory in Polymers	8
(d) Theoretical Aspects of Positron Annihilation in	
Condensed Matter	10
1.2.2 Electrical Properties of Polymeric Materials	12
(a) Dielectric properties of polymers	12
(i) Dielectric constant	12
(ii) Types of polarization	14
(1) Electronic Polarization.	14
(2) Atomic/ionic polarization	15
(3) Dipolar/orientational polarization	16
(4) Interfacial/Space charge polarization	17
(iii) Dielectric loss	19
(b) Conduction mechanisms in polymeric materials	20
(i) Electronic Conduction	20
(ii) Ionic Conduction (Electrolytic Conduction)	21
(iii) Hopping Mechanism	22
(iv) Tunneling Mechanism	22
1.2.3 AC Electrical Conductivity	23
1.2.4. Mechanical Properties of Polymers	24
Tensile strength of polymer composites	25
1.2.5 X-ray Diffraction (XRD)	27

1.2.6 Fourier Transform Infrared (FTIR)
1.2.7. Differential Scanning Calorimetry (DSC)
1.2.8. Radiation
(a) Gamma-Ray Interactions with Matter
(i) Photoelectric effect.
(ii) Compton Scattering
(iii) Pair Production
(b) Interaction of Radiation with Polymeric Materials
Cross-Linking and Chain Scission
(i) Evolution of gas
(ii) Formation of Unsaturated Groups
(iii) Color Centers
1.3. Literature Review
1.4. Aim of the Present Work
<u>Chapter 2</u>
Experimental Work
2.1. Materials used
(a)- Polyvinyl alcohol (PVA)
(b)-Polyethylene glycol (PEG)
(c)- Reduced graphene oxide (RGO)
2.2. Preparation of the Samples
2.3. Measurements
2.3.1. Positron Annihilation Lifetime (PAL) spectroscopy
(a)- Positron source
(b)- PAL instrumental set up.
(i) Scintillation detectors
(ii) Photomultiplier tube (PMT)
(iii) Amplifiers
(v) Timing Amplitude Converter (TAC)
(vi) Multichannel Analyzer (MCA)
(vii) Data analysis of PAL spectra
2.3.2. Electrical measurements.
(a) Dielectric measurements.
(b) DC Electrical Conductivity
(i) The Sample Shape
(ii) Set- Up

2.3.3. Mechanical measurements
Static tensile test
(i) The Sample Shape
(ii) The Apparatus
2.3.4. X-ray Diffraction (XRD)
2.3.5. Fourier transform infrared spectra (FTIR)
2.3.6. Differential Scanning Calorimetry (DSC)
2.3.7. Scanning Electron Microscope (DSC) Measurements
2.3.8. Gamma Irradiation (γ- radiation) Measurements
Chapter 3
Results and discussion
3.1. Positron annihilation lifetime spectroscopy(PALS)
3.2. X-ray Diffraction (XRD)
3.3. Fourier Transform Infrared (FTIR) Spectroscopy
3.4. Scanning Electron Microscope (SEM)
3.5. Differential scanning calorimetry (DSC)
3.6. Electrical Properties
3.6.1. Dielectric properties:
3.6.1.1. Variation of dielectric constant and dielectric loss wi
frequency
3.6.1.2. Variation of dielectric constant and dielectric loss wi
temperature
3.6.1.3. Effect of Filler content and γ -Irradiation on ϵ' and
ε ^{//}
·
3.6.1.5. AC conductivity analysis
3.6.2. DC Electrical Conductivity
(i) Effect of loading on the conductivity
(a) Voet model
(b) Chodak and Krupa model
(c) Correlation between I_2 % and $\ln \sigma_{dc}$
(d) Correlation between V_f and $\ln \sigma_{dc}$
(a) Correlation between \mathbf{v}_1 and in \mathbf{o}_{dc}
(ii) Effect of temperature on DC Electrical Conductivity

3.7. Mechanical Properties	
Correlation of mechanical properties with free volume measurements	158
Conclusion.	161
References	165

Arabic Summary

Acknowledgment

Before all and above all, many thanks to Allah, the lord of all beings.

I greatly privileged and honored have am to Prof. Dr/ Mona Mohamed Abd Latif Mohsen, Prof. Dr. Ashry Hassan Ashry, Dr. Ahmed Mohamed Ismail and Dr/ Fatma Elsayed Abd El Aziz as my supervisors.

My deepest thanks and gratitude to Prof. Dr/ Mona Mohamed Abd Latif Mohsen, Professor of Nuclear Physics, Faculty of Science, Ain Shams University, for her everlasting encouragement, continuous supervision, valuable criticism and fruitful advice which can never be forgotten.

My deepest thanks and gratitude to Prof. Dr. **Ashry Hassan Ashry**, Professor of Nuclear Physics, Faculty of Education, Ain Shams University, for his everlasting encouragement, continuous supervision, valuable criticism and fruitful advice which can never be forgotten.

My deepest thanks and gratitude to Dr/ Ahmed Mohamed Ismail Mohamed, Lecturer of Nuclear Physics, Faculty of Education, Ain Shams University, for his continuous supervision and support, valuable suggestions and everlasting encouragement during this work.

Acknowledgment

My deepest thanks and gratitude to Dr/ Fatma Elsayed Abd El Aziz, Lecturer of Solid State Physics, Faculty of Education, Ain Shams University, for her continuous supervision, valuable suggestions and everlasting encouragement during this work.

My deepest thanks and gratitude to Prof Dr/ **Kamal Reyad**, Professor of Nuclear Physics, Faculty of Science, Kafr El-Sheikh University, for his support and valuable suggestions and everlasting encouragement during this work.

Sincere thanks and appreciation to Prof. Dr/ **Radwan**, head of Physics Department, Faculty of Education, Ain Shams University for his everlasting encouragement.

List of Tables

	Page
Table (2.1): Some physical properties of PVA, PEG and	60
RGO.	UU
Table (2.2): Composition of the test samples.	62
Table (3.1): XRD parameters, the inter chain distance (d) and the diameter D from positron annihilation and the degree of crystallinity $\chi c\%$ for nonirradiated and irradiated samples.	93
Table (3.2): IR absorption bands and their assignment of	100
the nonirradiated pure PVA/PEG.	
Table (3.3): Values of glass transition temperatures (T_g) and melting temperatures (T_m) for nonirradiated and irradiated samples.	104
Table (3.4): Values of the Chodak and Krupa model parameters for nonirradiated and irradiated samples.	143
Table (3.5): Mechanical Properties of PVA/PEG/ RGO	155
composites. Table (3.6): Values of aspect ratio or for the investigated	
Table (3.6): Values of aspect ratio, α_g for the investigated samples	157

	Page
Figure (1.1): A schematic representation of the positron	6
annihilation process.	U
Figure (1.2): A cross-sectional view of the (Ps) as a probe of	9
free volume holes in a polymeric material.	
Figure (1.3): The relation between the o-Ps lifetime and free	11
volume hole size. The solid line is the best fit using eqn.(1.3).	
Figure (1.4): (a) Surface charge on a condenser with	
vacuum, and (b) Surface charge on a condenser with dielectric	14
material.	4.0
Figure (1.5): Mechanisms of polarization.	18
Figure (1.6): A typical stress-strain curve for a polymer.	26
Figure (1.7): Interaction of γ -rays with matter.	35
Figure (2.1): Chemical formula of PVA	55
Figure (2.2): Chemical formula of PEG	58
Figure (2.3): Chemical formula of RGO.	59
Figure (2.4): The nuclear decay scheme of ²² Na.	64
Figure (2.5): The source-sample sandwich.	64
Figure (2.6): Schematic diagram of positron annihilation	66
lifetime spectrometer	
Figure (2.7): Three lifetime components.	73
Figure (2.8): LCR bridge Fluke (Fluke 6306).	76
Figure (2.9): The sample holder used for electrical	70
measurements.	78
Figure (2.10): The circuit used in the DC electrical	78
conductivity measurements.	70
Figure (2.11): Schematic diagram of the tensile testing	79
machine.	19
Figure (3.1): Dependence of (a) o-Ps life time (τ_3) and (b) o-	
Ps intensity (I ₃ %) on the RGO volume fraction before and	86
after irradiation.	
Figure (3.2): Dependence of (a) Free volume $holes(V_f)$ and	
(b) Relative fractional free volume (F _r) on the RGO volume	87
fraction before and after irradiation	
Figure (3.3): Dependence of (a) Free annihilation lifetime	
(τ_2) and (b) Free annihilation intensity $I_2\%$ on the RGO	88
volume fraction before and after irradiation	

Figure (3.4): XRD patterns for (a) nonirradiated and	0.0
(b) irradiated PVA/PEG composites doped with different amounts of RGO	90
Figure (3.5): Dependence of degree of crystallinity (χ_c %) on	
the RGO content for nonirradiated and irradiated composites.	92
Figure (3.6): Variation of degree of crystallinity (χ_c %) and	
free volume holes (V_f) with the RGO volume fraction for (a)	94
nonirradiated and (b) irradiated samples.	
Figure (3.7): FTIR spectrum for (a) nonirradiated and	
(b) irradiated PVA/PEG samples filled with different amounts	96
of RGO.	
Figure (3.8): Proposed structure of PVA/PEG/RGO composite before and after irradiation with γ -rays.	100
Figure (3.9): SEM micrographs of (a) RGO and PG4 (b)	
nonirradiated and (c) irradiated.	102
Figure (3.10): DSC thermograms for (a) nonirradiated and	
(b) irradiated PVA/PEG samples doped with different	104
amounts of RGO.	_, _
Figure (3.11): Dependence of dielectric constant (ϵ') on the	100
frequency for the nonirradiated samples.	108
Figure (3.12): Dependence of dielectric constant (ϵ') on the	109
frequency for the irradiated samples.	109
Figure (3.13): Dependence of dielectric loss (ϵ'') on the	110
frequency for the nonirradiated samples.	110
Figure (3.14): Dependence of dielectric loss $(\epsilon^{1/2})$ on the	111
frequency for the irradiated samples.	111
Figure (3.15) : Variation of dielectric constant (ε') with	114
temperature for the nonirradiated samples.	117
Figure (3.16) : Variation of dielectric constant (ε') with	115
temperature for the irradiated samples.	
Figure (3.17): Variation of dielectric loss $(\epsilon^{1/2})$ with	116
temperature for the for nonirradiated samples.	
Figure (3.18): Dependence of dielectric loss (ϵ'') on	117
temperature for irradiated samples.	
Figure (3.19): Dependence of the (a) dielectric constant (ϵ')	450
and (b) dielectric loss (ϵ'') on RGO volume fraction before	120
and after irradiation.	

Figure (3.20) : Dependence of the real part of electric modulus (M') on frequency for the nonirradiated samples.	123
Figure (3.21): Dependence of the real part of electric	124
modulus (M') on frequency for the irradiated samples.	
Figure (3.22): Dependence of Dependence of the imaginary	125
part of electric modulus (M//) on frequency for the	
nonirradiated samples.	
Figure (3.23): Dependence of Dependence of the imaginary	
part of electric modulus $(M^{"})$ on frequency for the irradiated samples.	126
Figure (3.24): Dependence of AC electrical conductivity	100
$(\ln \sigma_{ac})$ on frequency for the nonirradiated samples.	129
Figure (3.25): Dependence of AC electrical conductivity	400
$(\ln \sigma_{ac})$ on frequency for the irradiated samples.	130
Figure (3.26): Dependence of AC electrical conductivity	
$(\ln \sigma_{ac})$ on volume fraction of RGO for nonirradiated and	131
irradiated samples.	
Figure (3.27): Dependence of the frequency exponent (s) on	100
temperature for (a) nonirradiated and (b) irradiated samples.	133
Figure (3.28): Dependence of AC electrical conductivity	40=
$(\ln \sigma_{ac})$ on temperature for the nonirradiated samples	135
Figure (3.29): Dependence of AC electrical conductivity	100
$(\ln \sigma_{ac})$ on temperature for the irradiated samples	136
Figure (3.30): Dependence of DC electrical conductivity (σ_{dc})	120
on the filler volume fraction(ϕ_c).	139
Figure (3.31): Theoretical plot of Logσ based on voet model.	139
Figure (3.32): The relation of log (σ_c/σ_m) of the PVA/PEG	
composites as function of the RGO volume fraction (ϕ_c) for	143
(a) nonirradiated and (b) irradiated samples.	
Figure (3.33): The relation of Ln (σ_{dc}) and $I_2\%$ of the	
PVA/PEG/RGO composites as a function of the volume filler	144
fraction (φ_c) for (a) nonirradiated and (b) irradiated samples.	
Figure (3.34): The variation of $(\ln \sigma_{dc})$ as a function of the	
reciprocal of the free volume, (1/V _f) of PVA/PEG/RGO	
polymer nanocomposites for (a) nonirradiated and	147
(b) irradiated samples.	
Figure (3.35): Temperature dependence of DC electrical	
conductivity for (a) nonirradiated and (b) irradiated samples	149

Figure (3.36):. Stress-strain curves for (a) nonirradiated and	
(b) irradiated PVA/PEG samples doped with different	152
amounts of RGO.	
Figure (3.37): Experimental Elastic modulus of the	
composites, calculated data derived from the Halpin-Tsai	156
model for (a) nonirrdited and (b) irrdited composites.	
Figure (3.38): Correlation between young's modulus and free	159
volume for (a) nonirradited and (b) irradiated composites.	159
Figure (3.39): Correlation between tensile stress and free	160
volume for (a) nonirradiated and (b) irradiated composites.	100