

STUDIES ON BIOSYNTHESIS OF COPPER OXIDE NANOPARTICLES USING SOME SOIL FUNGI

Thesis

SUBMITTED IN PARTIAL FULFILLMENT FOR THE MASTER DEGREE IN PREPARATION OF SCIENCE TEACHER

(BOTANY)

By

Abubakr Abdulmo'men Elsayed Attia Tallima

B. Sc. & Edu. AlAzhar University (2010)

General Diploma in Preparation of Science Teacher in Botany (2013)

Special Diploma in Preparation of Science Teacher in Botany (2015)

Supervised by

Prof. Dr. Mohamed Ghareib Ibrahim

Professor of Microbiology, Faculty of Education, Ain Shams University

Dr. Wafaa El-sayed Abdallah

Lecturer of Microbiology, Faculty of Education, Ain Shams University

(2019)

APPROVAL SHEET

Name: Abubakr Abdulmo'men Elsayed Attia Tallima

Title: "STUDIES ON BIOSYNTHESIS OF COPPER OXIDE NANOPARTICLES USING SOME SOIL FUNGI"

Supervisors

Approved


Prof. Dr. Mohamed Ghareib Ibrahim

Professor of Microbiology, Biological Sciences and Geology Department, Faculty of Education, Ain Shams University

Dr. Wafaa El-sayed Abdallah

Lecturer of Microbiology, Biological Sciences and Geology Department Faculty of Education, Ain Shams University

This dissertation has not been previously submitted for any degree, at this or any other university. The references being checked whenever possible show the extent to which I have availed myself of the work of other authors.
Abubakr Abdulmo'men

To My Parents, my wife, my sons and my family the scent of my life

ACKNOWLEDGEMENT

First of all, cordial thanks due to **ALLAH** who enabled me to overcome all the problems, which faced me throughout the work.

It's a great honor to thank my thesis advisor **prof. Dr. Mohammed**Ghareib Ibrahim, Professor of Microbiology, Faculty of Education, Ain

Shams University, for suggesting the point of this thesis, continuous supervision, the door to Prof. Dr. Ghareib office was always open whenever I ran into a trouble spot or had a question about my research or writing. He consistently allowed this paper to be my own work, but steered me in the right direction whenever he thought I needed it.

I would also like to thank the expert who was involved in the validation survey for this research project, **Dr. Medhat Ahmed Abu Tahon, Assistant Professor of Microbiology, Faculty of Education, Ain Shams University**, without his passionate participation and input in all steps of the practical work, statistics and graphical work, the validation survey could not have been successfully conducted, he started the practical work with me from the scratch till we finished despite his travelling.

So many thanks and gratitude to **Dr. Wafaa El-sayed Abdallah, Lecturer of Microbiology, Faculty of Education, Ain Shams University** for sharing in supervision, helping during practical work, providing facilities and continuous encouragement throughout the work.

A special thanks to **Prof. Dr. Mohammed Hamed Abdel-Aal, Head of Biological and Geological Sciences Department, Faculty of Education, Ain Shams University** for his facilities during the work.

Many thanks to my colleagues and all the members of Biological Sciences and Geology Department for their kind help and encouragement.

A word of thanks, a word of praise, for my wife, my family for being so great in many ways that pushed me forward.

CONTENTS

Content	Page
List of abbreviations	v
List of tables	vi
List of figures	viii
Aim of the work	1
Abstract	2
Historical Review	4
Materials and Methods	19
1. Sampling	19
2. Isolation and identification	19
3. Microorganisms	19
4. Chemicals and glass wares	20
5. Microbiological media	20
5.1. Growth media 5.2. Fermentation media	20 21
6. Cultivation	21
7. Extracellular biosynthesis of CuO NPs	22
7.1. Using the CS 7.2. Using the washed biomass	22 22
8. Optimization of the reaction conditions	22

CONTENTS

Content	Page
9. Characterization of CuO NPs	23
9.1. Visual observations	23
9.2. UV-Vis spectroscopy	23
9.3. High Resolution-Transmission Electron	24
Microscopy (HR-TEM)	
9.4. Selected area electron diffraction (SAED)	24
9.5. Dynamic light scattering (DLS)	24
9.6. Zeta potential measurement	25
9.7. X-ray diffraction (XRD)	25
9.8. Energy dispersive X-rays (EDX)	25
9.9. Fourier Transform Infrared (FTIR)	25
Spectroscopy	25
10. Antibacterial activity of the produced CuO NPs	26
10.1. Antibacterial assay	26
10.2. Determination of minimal inhibitory	26
concentrations (MIC)	
10.3. Determination of effect of NPs on membrane	27
leakage	28
10.3.1. Quantitative estimation of proteins	
10.3.2. Quantitative estimation of	28 29
reducing sugars	49
10.3.3. Estimation of nucleic acids	30
11. Different scavenging activities:	30

Content	Page
11.1. 2,2-Diphenyl 1-picrylhydrazil (DPPH) radical scavenging assay	30
11.2. Hydroxyl (OH ⁻) radical scavenging assay	31
11.3. Hydrogen peroxide (O_2^{2-}) scavenging assay	32
11.4. Superoxide (O^{2-}) radical scavenging assay	32
12. Photocatalytic degradation	33
13. Statistical analysis	34
Experimental Results	
PART I Biosynthesis of Copper oxide nanoparticles (CuO NPs) using some fungi isolated from the Egyptian soil	35
1- Screening	35
2- Biosynthesis of CuO NPs using biomass from	41
A. fumigatus on five different media	
3- Optimization of the reaction conditions	43
4 Fourier transform infrared (FTIR)	50
5- Characterization of the biosynthesized CuO NPs	51
PART II Some possible biomedical applications of CuO NPs biosynthesized using the preformed biomass of A. fumigatus	56
1- Antibacterial activity	56
2-Antioxidant and FR scavenging activity	63

CONTENTS

Content	Page
3-Photocatalytic biodegradation activity	66
Discussion	68
Summary	81
References	86
Arabic summary	

LIST OF ABBREVIATIONS

Abbreviation	Meaning
Ag	Silver
AOP	Advanced oxidation processes
ATCC	American Type Culture Collection
Au	Absorbance unit
AUMC	Assuit University Mycological Center
CFU	Colony forming units
CS	Culture Supernatant
Cu (NO ₃) ₂ .3H ₂ O	Copper nitrate
CuO	Copper Oxide
DLS	Dynamic light scattering
DPPH	2,2-Diphenyl 1-picrylhydrazil
EDX	Energy dispersive X-rays
FR	Free radicals
FTIR	Fourier Transform Infrared Spectroscopy
HR-TEM	High Resolution-Transmission Electron
1114-115141	Microscopy
IC ₅₀	The half maximal inhibitory concentration
KBr	Potassium Bromide
MB	Methylene Blue
MDR	Multidrug resistant
MIC	Minimum inhibitory concentration
mM	Milli molar
nm	Nanometer
NPs	Nanoparticles
$\mathbf{O_2}^{-}$	Superoxide radical
O_2^{2-}	Hydrogen peroxide radical
OH.	Hydroxyl radical
RSA	Radical scavenging activity
SAED	Selected area electron diffraction
TiO ₂	Titanium dioxide
UV-Vis	Ultraviolet-visible
XRD	X-ray diffraction
ZnO	Zinc Oxide

LIST OF TABLES

Table	Title	Page
no.		
1.	Potentiality of the isolated soil fungi in biosynthesis of CuO NPs	36
2.	Biosynthesis of CuO NPs using biomass from A. fumigatus grown on five different media	43
3.	Effect of reaction pH values on the biosynthesis of extracellular CuO NPs from A. fumigatus biomass	44
4.	Influence of reaction temperature on the biosynthesis of CuO NPs using biomass from <i>A. fumigatus</i>	45
5.	Biosynthesis of CuO NPs from A. fumigatus biomass using two different precursors	46
6.	Influence of changing salt concentration on the biosynthesis of CuO NPs using A . fumigatus biomass	48
7.	Biosynthesis of CuO NPs using preformed biomass from <i>A. fumigatus</i> after different reaction times	49
8.	Size of inhibition zone for CuO NPs from A. fumigatus against four different bacterial strains in comparison with the antibiotic ciprofloxacin	57
9.	Antibacterial activity of different concentrations of the biosynthesized CuO NPs against four bacterial strains including human pathogens and determination of their MIC	58
10	Content of intracellular components of the test bacteria	59
11.	Leakage of intracellular components from the	61

List of Tables

Table no.	Title	Page
	bacterial cells treated with their MIC of CuO NPs	
12.	Free radical scavenging activity of CuO NPs biosynthesized using the preformed biomass of A. fumigatus	64

LIST OF FIGURES

Figure	Title	Page
no.	Standard curve of Daving Samue Albumin	20
1.	Standard curve of Bovine Serum Albumin	29
2.	Standard curve of Glucose	30
3.	Image of color change after incubating the biomass of <i>A. fumigatus</i> in 1mM copper nitrate (Right), in comparison with the biomass in deionized water as a positive control (Middle) and copper nitrate alone as a negative control (Left)	37
4a.	UV-Vis absorption spectrum of CuO NPs formed using biomass of the fungus A. fumigatus	38
4b.	UV-Vis absorption spectrum of CuO NPs formed using CS of the fungus <i>P. pinophilum</i>	39
4c.	UV-Vis absorption spectrum of CuO NPs formed using biomass of the fungus A. carneus	39
4d.	UV-Vis absorption spectrum of CuO NPs formed using biomass of the fungus A. sydowii	40
4e.	UV-Vis absorption spectrum of CuO NPs formed using CS of the fungus <i>E. nidulans</i>	40
5.	UV-Vis absorption spectrum of CuO NPs formed using biomass of the fungus A. fumigatus	41-42
6.	Biosynthesis of CuO NPs by A. fumigatus biomass as influenced by different pH values	44
7.	Biosynthesis of CuO NPs by A. fumigatus biomass as influenced by different reaction temperatures	45
8.	Biosynthesis of CuO NPs from A. fumigatus biomass in presence of two different precursors	46
9.	Influence of changing copper nitrate concentration on the biosynthesis of CuO NPs using A. fumigatus biomass	47