

CONTENT-BASED IMAGE RETRIEVAL FOR MEDICAL IMAGING USING IRMA DATASET

By

Ayat Youssef Mohammed Foad Helmy

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

Biomedical Engineering and Systems Department

CONTENT-BASED IMAGE RETRIEVAL FOR MEDICAL IMAGING USING IRMA DATASET

By **Ayat Youssef Mohammed Foad Helmy**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in

Biomedical Engineering and Systems

Under the Supervision of

Prof. Dr. Ayman M. Eldeib

Prof. Assoc. Dr. Inas A. Yassine

Professor of Biomedical Engineering Biomedical Engineering and systems Faculty of Engineering, Cairo University

Associate Professor Biomedical Engineering and systems Faculty of Engineering, Cairo University

Dr. Muhammad Ali Rushdi

Assistant Professor Biomedical Engineering and systems Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

CONTENT-BASED IMAGE RETRIEVAL FOR MEDICAL IMAGING USING IRMA DATASET

By **Ayat Youssef Mohammed Foad Helmy**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **MASTER OF SCIENCE**

:..

Biomedical Engineering and Systems Department

Approved by the Examining Committee

Prof. Dr. Ayman Mohammed Eldeib

(Thesis Main Advisor)

Professor, Biomedical Engineering and Systems, Cairo University

Assoc.Prof. Dr. Inas Ahmed Yassine

(Advisor)

Associate Professor, Biomedical Engineering and Systems, Cairo University

Prof. Dr. Ahmed Mohammed El-Bialy

(Internal Examiner)

Professor, Biomedical Engineering and Systems, Cairo University

Prof. Dr. Samia Abd Alraziq Mashaly

(External Examiner)

Professor in electronic research institute

Engineer's Name: Ayat Youssef Mohammed Foad Helmy

Date of Birth: 7/6/1989 **Nationality:** Egyptian

E-mail: ayatyhelmy@gmail.com

Phone: 01224722757

Address: 40 Nozha St., Nasr City

Registration Date: 1/3/2012 **Awarding Date:**/2018 **Degree:** Master of Science

Department: Biomedical Engineering and Systems.

Supervisors:

Prof. Dr. Ayman Mohammed Eldeib Assoc. Prof. Dr. Inas Ahmed Yassine

Dr. Muhammad Ali Rushdi

Examiners:

Prof. Dr. Samia Abd Alraziq Mashaly (External

examiner)

-Professor in electronic research institute Prof. Dr. Ahmed Mohammed El-Bialy (Internal

examiner)

Porf. Dr. Ayman Mohammed Eldeib (Thesis main

advisor)

Assoc. Prof. Dr. Inas Ahmed Yassine (Advisor)

Title of Thesis:

Content-based image retrieval for medical imaging using IRMA dataset

Kev Words:

Content-based image retrieval; X-ray; Local Binary Pattern, Mesh Local Binary Pattern **Summary:**

Content-Based Image Retrieval (CBIR) for medical imaging helps in efficient diagnosis and treatment planning can be supported by developing retrieval systems to provide high-quality healthcare. In this thesis, different approaches are proposed using IRMA dataset in each block of the CBIR system, And this includes pre-processing, image enhancement as Contrast Limited Adaptive Histogram Equalization (CLAHE), median filter and gamma correction, feature extraction method as Local Binary Pattern (LBP) and Mesh Local Binary Pattern (MLBP) with different configurations and for the retrieval different methods as Support Vector Machine (SVM), Locality Sensitive Hashing (LSH), Fisher Discriminant Analysis (FDA), Linear Fisher Discriminant Analysis (LFDA), using fusion of them and by using conventional similarity based learning as Euclidean, Mahalanobis, Spearman, Correlation and Hamming Distance. And the evaluation is done using the specific evaluation of IRMA dataset. This thesis gives a detailed implementation for each mentioned step.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name:	Date:
Signature:	

Acknowledgments

First and foremost, I thank **ALLAH**, the most gracious, the ever merciful for helping me finishing this work.

I want to thank all those, who helped me by their knowledge and experience. I will always appreciate their efforts. I would like to offer my sincere thanks to my supervisors **Prof. Dr. Ayman Eldeib, Assoc. Prof. Dr. Inas A. Yassine** and **Dr. Muhammad Rushdi.** I owe them for valuable supervision, continuous encouragement, useful suggestions, and active help during this work. My sincere appreciation and gratitude to my family for their help and patience during the preparation of this work,

Dedication

I want to dedicate my thesis to my mother 'God Bless her soul'. I know that you will be proud of me as you were when I graduated from university. I wish you are here to attend my defense.

Table of contents

Disclair	mer	
Acknow	vledgments	i
Dedicat	tion	ii
Table o	of contents	iv
List of T	Tables	vi
List of F	Figures	vii
Nomen	clature	ix
Abstrac	ct	
Chapte	r 1 : Introduction	1
1.1.	Text Based Image Retrieval (TBIR)	1
1.2.	Content-Based Image Retrieval (CBIR)	2
1.3.	Big Data	3
1.4.	Fields of Application	4
1.5.	Thesis structure	6
Chapte	r 2 Content-Based Image Retrieval Systems	7
2.1.	Introduction	
2.2.	CBIR system components	
2.2.		
2.2.		
	2.2.2.1. Global Features	
	2.2.2.2. Local Features	
2.3.	Features Matching (Similarity measurements)	S
2.4.	Thesis Motivation	g
Chapte	r 3 : Literature Review	11
3.1.	Introduction	11
3.2.	Feature Extraction Techniques	11
3.2.	.1. Radon Transform technique	11
3.2.		
3.2.	.3. Convolutional Auto-encoder (CAE)	15
3.3.	Similarity measurement techniques	17

hapter 4 : Proposed Content-Based Retrieval System	18
4.1. Introduction	18
4.2. Proposed system flowchart	18
4.3. IRMA Dataset	10
4.3.1. IRMA code	
4.4. Pre-processing operations	
4.4.1. Image resizing	
4.4.2. Noise removal	
4.4.3. Image Enhancement	
4.4.3.1. Median Filter:	
4.4.3.2. Contrast Limited Adaptive Histogram Equalization (CLAHE):	
4.4.3.3. Gamma Correction	26
4.5. Feature Extraction	28
4.5.1. Local Binary Pattern (LBP)	29
4.5.2. Mesh Local Binary Pattern (MLBP)	
4.6. Dimensionality Reduction	
4.6.1. Fisher Discriminant Analysis (FDA)	
4.6.2. Local Fisher Discriminant Analysis (LFDA)	
4.6.3. Locality Sensitive Hashing (LSH)	35
4.7. Image Classification	37
4.7.1. Support Vector Machine (SVM)	38
4.8. Similarity measurement	30
4.8.1. Distance based Measures	
4.8.1.1. Euclidean Distance:	
4.8.1.2. Hamming Distance	
4.8.1.3. Spearman Correlation Distance	
4.8.1.4. Correlation Distance	
4.8.2. Metric Learning	
4.8.2.1. K-Nearest Neighbor Search (K-NN)	
4.8.2.2. Mahalanobis Distance	
4.9. Fusion System	46
4.10. Performance Evaluation	47
4.11. Conclusion	48
hapter 5 Results and Discussion	49
5.1. Introduction	49
5.2. Comparison between the distance-based metrics	49
5.3. CBIR using decision fusion	
5.4. First Image Retrieval	
5.4.1. Results by image enhancement technique	
5.4.2. Results by feature extraction method	
5.4.3. Results by retrieval method	

5.4.		
5.4.	5. First image retrieval best results	55
5.5.	Five-Image Retrieval	
5.5.	1. Results by image enhancement technique	57
5.5.	2. Results by feature extraction method	58
5.5.	3. Five images retrieved best results	58
5.6.	Ten-Images Retrieval	60
5.6.	1. Results by image enhancement technique	60
5.6.	2. Results by feature extraction method	61
5.6.	3. Ten images retrieved best results	61
5.7.	Discussion about retrieval results	61
Chapter	r 6 Conclusions and Future work	64
6.1.	Conclusions	64
6.2.	Future Work	66
Referen	oces	67

List of Tables

Table 5.1 IRMA error scores of the CBIR system over all similarity methods50
Table 5.2 IRMA error scores for one retrieved image based on retrieval method and
decision fusion systems52
Table 5.3 IRMA error scores for the first retrieved image based on distance similarity53
Table 5.4 IRMA error scores for five retrieved image based on retrieval and decision
fusion methods56
Table 5.5 IRMA error scores for five retrieved images based on similarity distance57
Table 5.6 IRMA error scores for ten retrieved image based on retrieval and decision
fusion systems59
Table 5.7 IRMA error scores for ten retrieved images based on similarity distance60
Table 5.8 Processing times in seconds (s) for database creation per image in each
feature extraction method
Table 5.9 Retrieval times in milliseconds (ms) for each retrieval and similarity methods
applied given the training and testing datasets63
Table 6.1 Summary of the best IRMA error for first image retrieval based on retrieval
and decision fusion methods65
Table 6.2 Summary of the best IRMA error score for first image retrieval based on
similarity distance65

List of Figures

Figure 1.1 A typical Text-Based Image Retrieval system [4]	2
Figure 1.2 A typical Content-Based Image Retrieval system[7]	
Figure 2.1 Block diagram of CBIR system[16]	
Figure 3.1 Radon transform. Maps f on the (x, y) -domain into f on the (α, s) -domain	
[25]	11
Figure 3.2 Generating Radon barcode (RBC), Where Ps is the projection and Cs is the	ıe
binary of Ps [20]	
Figure 3.3 Generating minimum/ maximum RBC[21].	
Figure 3.4 The architecture of Neural Network (NN)[27].	
Figure 3.5 The architecture of auto-encoder [28]	
Figure 3.6 Architecture of Stacked auto-encoders with 3 hidden layers[28]	
Figure 3.6 Example of a CNN architecture [32]	
Figure 4.1 Content-Based Image Retrieval Proposed system	
Figure 4.2 Samples of IRMA code images[37]	
Figure 4.3 Anatomical code [36]	
Figure 4.4 Size variations of IRMA dataset	
Figure 4.5 Unrelated landmarks within images	
Figure 4.6 Variations of illumination	
Figure 4.7 Removing Unrelated landmarks by changing intensity values(a) is the	
original image (b) After changing block intensity	23
Figure 4.8 Superimposing a circle on the image (a) before circling (b) After	
superimposing circle	24
Figure 4.9 Effect of Applying median filter on the original image.(a) is the original	
image and (b) image after applying median filter.	25
Figure 4.10 Effect of applying CLAHE on IRMA dataset. (a) The original image, (b)	
after applying CLAHE on IRMA dataset.	
Figure 4.11 Gamma correction curve[7].	
Figure 4.12 Gamma Correction variation.	
Figure 4.13 Effect of Gamma Correction on IRMA dataset. (a) The Original Image, (
Image after applying Gamma correction	28
Figure 4.14 Example of obtaining LBP for the 3×3 pattern (a) Greyscale pixel value	
(b) Binary Pattern, (c) Weight table, (d) LBP code[48]	
Figure 4.15 Circular neighborhood sets for different (P,R) [47]	
Figure 4.16 The difference between LBP and MLBP for the first 3 patterns[47]	
Figure 4.17 Feature vectors of LBP and MLBP.	
Figure 4.18 LSH projecting for neighbors points[58]	
Figure 4.19 Support vectors[61]	
Figure 4.20 Kernel trick for non-linear Classification[61]	
Figure 4.21 Euclidean distance (x, y)[66].	
Figure 4.22 Example of Hamming distance between alphabetic letters in string[71]	
Figure 4.23 Example of binary Hamming distance[68]	
Figure 4.24 (a) +ve Spearman correlation (b) -ve Spearman correlation [75]	
Figure 4.25 Example of Mahalanobis distance between points (A,B) and (A,C)[69].	
Figure 4.26 The decision fusion different combination of the output label	
i 15aio 1.20 ino accision rasion anticioni comonianon oi me oaipai iadel	. r/

Nomenclature

BKS Behavioral Knowledge Space

CBIR Content-Based Image Retrieval

CLAHE Contrast Limited Adaptive Histogram Equalization

CNN Convolutional Neural Network

CT Computed Tomography

FDA Fisher Discriminant Analysis

GC Gamma Correction

Image Cross Language Evaluation Forum

IR Image Retrieval

IRMA Image Retrieval in Medical Applications

k-NN K- Nearest Neighbor

LBP Local Binary Pattern

LFDA Local Fisher Discriminant Analysis

LSH Locality Sensitive hashing

MLBP Mesh Local Binary Pattern

MRI Magnetic Resonance Imaging

RBF Radial Basis Function

SAE Stacked Auto-Encoder

SIANN Space Invariant Artificial Neural Network

SVM Support Vector Machine

Abstract

Content-Based Image Retrieval (CBIR) become one of the most active areas in medical image analysis in the last two decades because of the steadily increase in the number of digital images used. Efficient diagnosis and treatment planning can be supported by developing retrieval systems to provide high-quality healthcare. Extensive research has attempted to improve the image retrieval efficiency. The critical factors when searching in large databases are time and storage requirements. In general, although many methods have been suggested to increase accuracy, fast retrieval has been rather sporadically investigated.

In this thesis, different approaches are proposed to reduce the computation complexity in terms of both the processing time and memory space requirements used for saving our database to be used in medical image retrieval. The dataset used is Image Retrieval in Medical Applications (IRMA) which contains 14,410 X-ray images labeled as IRMA coding the Image modality, body orientation, body region and biological system. A pre-processing module was used to prepare the dataset for further analysis, this module includes resizing, removal of the unrelated landmarks, as well as image enhancement algorithms, including gamma correction, median filter and Contrast Limited Adaptive Histogram Equalization (CLAHE). Second module in our pipeline is the feature extraction, Local Binary Pattern (LBP) and Mesh Local Binary Pattern (MLBP) histogram-based features were extracted from IRMA dataset. In the similarity measurement, the on learning based as distance based were employed. The learningbased algorithm prove outperformed the distance-based measures. Locality Sensitive hashing (LSH), Fisher Discriminant Analysis (FDA) and Local Fisher Discriminant Analysis (LFDA) employed the extracted features along with their corresponding image category labels to build a Support Vector Machine (SVM) classifier. Subsequently, the k-nearest neighbor search method is applied to find the images with minimum distance of the LBP and MLBP within the same class predicted by the trained SVM classifier and voting between them by using LBP and MLBP features. The performance of the retrieval process is evaluated using IRMA score, provided by Image CLEF to compute the error between the IRMA codes of the testing images. The SVM approach scored IRMA error score of 240 using MLBP with parameters of 8 neighbors and radius equal 1, using pre-processing and gamma correction as image enhancement algorithm that boosted the results from with the raw image that error scored 319. While the best IRMA error score using LSH is 362, using FDA is 405 and using LFDA is 347. By comparing the results, SVM scores boosted performance by 1.69% from FDA results. These results demonstrate that SVM method has the capacity to retrieve similar responses for the correctly identified query image and even for those mistakenly classified by SVM.

Chapter 1: Introduction

With rapid growth of computer technologies, digitized information has gained tremendous interest for more than two decades. Since the steadily increasing amount of information has been made easily accessible through digital media, navigation and retrieving accurate and relevant information from big data has become one of the most important problems in information technology. Images are utilized in many application fields such as biomedicine, crime prevention, architecture, engineering, military, commerce, education and entertainment. Imaging provides important support in these areas. Especially in medicine, imaging constitutes a very fast and non-invasive method for diagnosis, treatment and monitoring of different disease. The digitization of images as the first factor, comes in a prominent position due to its benefits in many areas as commerce, crime investigation and medical field [1].

Also, the presence of internet, the second factor that makes it possible for the human kind to access this huge amount of information easily. These two factors are highly significant for the medical field. Medical imaging, with the advancement of multimedia and imaging technology became one of the most important components in clinical diagnosis, by seeking to reveal internal structures hidden by the skin and bones. The substantiality, to acquire similar images in various modalities in various stages of the disease progression, is for the process of clinical decision-making. For this reason, the need for an efficient and accurate information retrieval system has increased and attracted much interest among the researchers in recent years. Also, the existence of large number of medical image databases makes it an urgent need for a system of Image Retrieval (IR). There are two kinds of medical image retrieval systems, namely text-based and content-based methods [1,2].

1.1. Text Based Image Retrieval (TBIR)

Text Based Image Retrieval (TBIR) can be traced back to the late 1970s. TBIR is used to manually annotate the image in the database with annotations, keywords, or descriptions. So, images are labeled by taking advantage of keywords, classification codes or subject heading to search and retrieve images. This process is used to describe both image contents and other metadata of the image such as: image file name, image and image format, image size and image dimensions. Then, the user formulates textual or numeric queries to retrieve all images that are satisfying some of the criteria based on these annotations[3], as shown in Figure1.1[4].

Using these textual labels, retrieval can be easily and quickly applied. However, there are some drawbacks in TBIR. The first drawback is that the most descriptive annotations must usually be entered manually by human operators. Manually annotation for a large image database is impractical, as entering keywords for images in a large database manually can be expensive, time consuming, inefficient, and may not capture the perfect word that describes the image. The annotator may give different descriptions to images with similar visual contents. Also, textual annotations are language dependent. As well, this method cannot prevent incorrect or missing results based on mistakenly labeled images. The second drawback is that the most images are