

By

Eng. MOHAMED SALAMA EL-SAYED HAMMAD

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electrical Power and Machines Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2015

By

Eng. MOHAMED SALAMA EL-SAYED HAMMAD

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electrical Power and Machines Engineering

By

Eng. MOHAMED SALAMA EL-SAYED HAMMAD

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electrical Power and Machines Engineering

Under the Supervision of

Prof. Dr.:

M. Mamdouh Abdelaziz (God's mercy)

Electrical Power & Machines

Faculty of Engineering-Cairo University

Assist. Prof. Dr.:

Ahmed M. Ahmed Ibrahim

Electrical Power & Machines

Faculty of Engineering-Cairo University

By

Eng. MOHAMED SALAMA EL-SAYED HAMMAD

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electrical Power and Machines Engineering

Approved by the

Examining Committee:

Assist. Prof. Dr.: Ahmed M. Ahmed Ibrahim, On behalf of the supervisors Electrical Power & Machines, Cairo University.

Prof. Dr.: Essam-Eldin M. Aboul Zahab, Member

Electrical Power & Machines, Cairo University.

Prof. Dr.: Mohamed Abdelfattah Farahat, Member

Electrical Power & Machines, Zagazig University.

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2015.

Engineer: Mohamed Salama El-Sayed Hammad

Date of Birth: 10 / 6 / 1984 **Nationality:** Egyptian

E-mail: Eng_moh_salama@yahoo.com

Phone:+201008607727Address:Zifta – GharbiaRegistration Date:1/10/2008

Awarding Date: / /

Degree: Master of Science

Department: Electrical Power and Machines Engineering

Supervisors: Prof. Dr.: M. Mamdouh Abdelaziz (God's mercy)

Assist. Prof. Dr.: Ahmed M. Ahmed Ibrahim

Examiners: Assist. Prof. Dr.: Ahmed M. Ahmed Ibrahim

Prof. Dr.: Essam-Eldin M. Aboul Zahab **Prof. Dr.:** Mohamed Abdelfattah Farahat

Title of Thesis:

External Corrosion Control of the Underground Steel Pipelines Using Cathodic Protection Systems

Key Words:

Corrosion, Cathodic Protection, Sacrificial Anode, Impressed Current, Polarization Resistance.

Summary:

The thesis discusses the cathodic protection technique used for corrosion mitigation of underground steel piping. Since corrosion and cathodic protection are electrochemical processes involving electrical current and an exchange of charged ions, electrical models can be developed. The main objective of the thesis is study of the cathodic protection systems of underground steel piping to develop equivalent electrical models, which can be used in simulation of such systems. These equivalent models can be prepared through the electrical modeling for the electrode/electrolyte interface by Randle's circuit model. The study herein is based on that the activation (charge-transfer) polarization appears only at the electrode; i.e. in the absence of concentration (mass-transfer) effects, thereby Randle's circuit model is composed of a double-layer capacitance (C_{dl}) in parallel with the polarization resistance (R_p). The equivalent models can enable us to validate the design procedures of cathodic protection systems by the knowledge of the polarization amount which can occur for the pipeline potential as a result of applying the cathodic protection. Also through these models, the impact of pipeline polarization resistance on applying the cathodic protection can be simulated. Simulation and results examining are performed by using MATLAB/SIMULINK program and the study assumes that the soil along the pipeline is homogenous.

ACKNOWLEDGMENT

Firstly, Thank Allah. I would like to express my appreciated thanks for all of my supervisors, my colleagues, and everybody who helped, or advised me during the preparation of this thesis.

Special thanks to Prof. Dr.: Mohamed Mamdouh Abdelaziz (God's mercy) for his appreciated efforts. I would like to thank Assist. Prof. Dr.: Ahmed Mohamed Ahmed Ibrahim for all his diligent guidance as my supervisor, and his unselfish help in all aspects of my study. I wish to thank all colleagues and friends for support and help. Also, I would like to thank Engineer: Sleem Mahmoud and Assist. Lecturer at Faculty of Engineering-Mansoura University: Abdelhady Ghanem for their help and support.

Finally, I would like to express all of my sincere and appreciated thanks to my parents, my wife and my Kids (Abdelrahman and Reem) for their sincere support.

TABLE OF CONTENTS

ACKNOV	WLEDGMENT	i
TABLE (OF CONTENTS	ii
LIST OF	TABLES	. vi
LIST OF	FIGURES	vii
LIST OF	SYMBOLS AND ABBREVIATIONS	ix
	CT	
	R 1 : INTRODUCTION	
	NTRODUCTION	
	THESIS OBJECTIVES	
	THESIS ORGANIZATION	
СНАРТЕ	R 2 : CORROSION AND CATHODIC PROTECTION BASICS	. 3
2.1. II	NTRODUCTION	. 3
	MECHANISM OF ELECTROLYTIC CORROSION	
2.2.1.	Thermodynamic Considerations	. 3
2.2.2.	Electromotive (Galvanic) Series	. 3
2.2.3.	Electrochemical Nature of Corrosion	. 4
2.2.4.	Pourbaix Diagram (E-pH diagram)	. 7
2.2.5.	Corrosion Cell Kinetics (Polarization)	. 8
2.2.5	5.1. Activation polarization	12
2.2.	5.2. Concentration polarization	13
2.3. T	YPES OF CORROSION	16
2.3.1.	General (Uniform) Corrosion	16
2.3.2.	Concentration Cell Corrosion	17
2.3.3.	Galvanic Corrosion	17
2.3.4.	Stray Current Corrosion	18
2.4. F	ACTORS AFFECTING CORROSION RATES	19
2.4.1.	Electrical Effects	19
2.4.2.	Chemical Effects	19
2.5. A	NODE TO CATHODE AREA RATIO	20
2.6. C	CORROSION CONTROL	21
2.6.1.	Design	21
2.6.2.	Materials Selection	21
2.6.3.	Inhibitors	22
2.6.4.	Protective Coatings	22
2.65	Cathodic Protection	22

	ORROSION CONTROL BY CATHODIC PROTECTION	23
2.7.1.	Cathodic Protection Principle	23
2.7.2.	Cathodic Protection Criteria	25
2.7.2.	1. Factors affecting validity of criteria	30
2.7.2.	2. Reference electrodes	30
2.7.3.	Cathodic Protection Systems	31
2.7.3.	1. Sacrificial anode (Galvanic) system	31
2.7.3.	2. Impressed current (Rectifier-Type) system	33
2.7.4.	Anode Bed Types Used for Underground Cathodic Protection	. 35
2.7.4.	1. Remote vs. close ground beds	36
2.7.	4.1.1. Remote ground beds	36
2.7.	4.1.2. Close ground beds	37
2.7.4.	2. Horizontal anode bed	39
2.7.4.	3. Vertical anode bed	39
2.7.4.	4. Measurement of soil resistivity	39
2.7.5.	Interference and Bonds	40
2.7.6.	Insulating Flanges	41
2.7.7.	Coating and Cathodic Protection	
2.7.8.	Cathodic Effects	43
	A PREVIOUS WORKS	11
CHAPTER	3: PREVIOUS WORKS	44
	TRODUCTION	
3.1. IN		. 44
3.1. IN	TRODUCTION	. 44 . 44
3.1. IN 3.2. PR	TRODUCTIONEVIOUS WORKS	. 44 . 44 . 44
3.1. IN 3.2. PR 3.2.1.	TRODUCTIONEVIOUS WORKS	. 44 . 44 . 44
3.1. IN 3.2. PR 3.2.1. 3.2.2.	TRODUCTION	. 44 . 44 . 44 . 44 res,
3.1. IN 3.2. PR 3.2.1. 3.2.2.	TRODUCTION	. 44 . 44 . 44 . 44 res, . 44 uit,
3.1. IN 3.2. PR 3.2.1. 3.2.2. 3.2.3.	TRODUCTION	. 44 . 44 . 44 res, . 44 uit, 45
3.1. IN 3.2. PR 3.2.1. 3.2.2. 3.2.3. 3.2.4.	TRODUCTION	. 44 . 44 . 44 res, . 44 uit, . 45
3.1. IN 3.2. PR 3.2.1. 3.2.2. 3.2.3. 3.2.4. 3.2.5.	TRODUCTION	. 44 . 44 . 44 res, . 44 uit, 45 45 ion 46
3.1. IN 3.2. PR 3.2.1. 3.2.2. 3.2.3. 3.2.4. 3.2.5. 3.2.6.	TRODUCTION	. 44 . 44 . 44 res, . 44 uit, . 45 45 ion . 46 pril . 46 24]
3.1. IN 3.2. PR 3.2.1. 3.2.2. 3.2.3. 3.2.4. 3.2.5. 3.2.6. 3.2.7.	TRODUCTION EVIOUS WORKS Cathodic Protection, February 1957 [3]	. 44 . 44 . 44 res, . 44 uit, 45 45 ion 46 pril 46 [24] . 47
3.1. IN 3.2. PR 3.2.1. 3.2.2. 3.2.3. 3.2.4. 3.2.5. 3.2.6. 3.2.7.	TRODUCTION	. 44 . 44 . 44 res, . 44 uit, 45 45 ion 46 pril 46 24] . 47

3.2.11. Power Losses due to Pipeline Cathodic Protection (CP) 6-Pulse Rec June 2008 [26]	
3.2.12. Electromagnetic Interference between Electrical Power Lines	and
Neighboring Pipelines, August 2008 [27]	
3.2.13. Effect of HVAC System on Neighbouring Pipelines and Communic Cables, September 2009 [28]	
3.2.14. The Effects of High-Voltage DC Power Transmission Systems on E	Buried
Metallic Pipelines, May/June 1971 [29]	50
CHAPTER 4: CATHODIC PROTECTION SYSTEMS DESIGN	52
4.1. INTRODUCTION	52
4.2. REQUIRED INFORMATION	52
4.3. ELECTRICAL CIRCUIT OF CATHODIC PROTECTION SYSTEMS	54
4.3.1. Calculating Anode Resistance to Remote Earth	55
4.3.1.1. Horizontal anode bed	
4.3.1.2. Vertical anode bed	56
4.3.2. Calculating structure Resistance to Remote Earth	57
4.3.3. Calculation of Cable and Pipe Lineal Resistances	
4.4. SYSTEM CAPACITY AND LIFE	59
4.5. SYSTEM DRIVING VOLTAGE	61
4.5.1. Sacrificial Anode System	61
4.5.2. Impressed Current System	61
4.6. DESIGN PROCEDURES	63
4.6.1. Sacrificial Anode Cathodic Protection System	63
4.6.2. Impressed Current Cathodic Protection System	64
CHAPTER 5 : ELECTRICAL MODEL OF THE ELECTRO	ODE/
ELECTROLYTE INTERFACE	
5.1. INTRODUCTION	65
5.2. PHYSICAL BASIS OF THE ELECTRODE/ELECTROLYTE INTERI	FACE
	65
5.3. THE ELECTRICAL MODEL OF THE ELECTRODE/ELECTROI	LYTE
INTERFACE	67
5.4. IDEALLY POLARIZABLE ELECTRODES AND IDEALLY NO POLARIZABLE ELECTRODES	
5.5. RANDLE'S CIRCUIT FOR THE ELECTRODE/ELECTROI	LYTE
INTERFACE IN THE ABSENCE OF MASS TRANSFER EFFECTS	71
5.6. ESTIMATION OF CORROSION RATE FROM SOIL PROPERTIES .	75
5.6.1. Corrosion Estimates from Soil Parameters	75
5.6.1.1. Soil electrical resistivity	75
5.6.1.2. Mineral components	78

5.6.1.3. Soil pH value	
5.6.1.4. Soil texture	
5.6.1.5. Soil temperature	
5.6.1.6. Soil oxidation-reduction (Redox) potential	
5.6.2. Corrosion Estimation from AWWA Guideline	
5.6.3. NIST Field Corrosion Rate Measurements	
5.6.4. Utility Measurements of Corrosion Rates in Various Soils	
CHAPTER 6: SIMULATION AND RESULTS	
6.1. INTRODUCTION	
6.2. SIMULATION OF SACRIFICIAL ANODE CATHODIC PROTECTION	
SYSTEM 84	
6.2.1. Methodology	
6.2.2. Simulation Results and Discussion	
6.3. SIMULATION OF IMPRESSED CURRENT CATHODIC PROTECTION	
SYSTEM	
6.3.1. Methodology	
6.3.2. Simulation Results and Discussion	
6.3.3. Experimental Measurements	
CHAPTER 7 : CONCLUSIONS AND FUTURE WORK 109	
7.1. CONCLUSIONS	
7.2. RECOMMENDATIONS FOR FUTURE WORK	
REFERENCE 111	
APPENDIX A- GALVANIC ANODE SYSTEM 115	
APPENDIX B- IMPRESSED CURRENT SYSTEM 117	

LIST OF TABLES

Table 2.1: Practical galvanic series for materials in neutral soils and water 4
Table 2.2: Soil resistivity and corrosion
Table 2.3: Relationship between potential and corrosion risk for buried steel 28
Table 2.4: Selected cathodic protection criteria for different materials
Table 2.5: Potentials of common reference electrodes
Table 2.6: Properties of some sacrificial anode materials
Table 2.7: Galvanic anode backfills
Table 2.8: Properties of some impressed current anodes materials
Table 4.1: Approximate current density requirements for cathodic protection of steel
Table 4.2: Typical current density requirements for cathodic protection of uncoated steel
Table 4.3: Typical specific leakage resistance and conductance for dielectric
protective coatings in 1000 Ω -cm soil
Table 4.4: Typical consumption rate and capacities of different anode materials in
soils or fresh waters
Table 5.1: Steel pipe corrosion classification
Table 5.2: Corrosivity classification based on soil resistivity
Table 5.3: Soil resistivity and potential corrosion rate
Table 5.4: Typical resistivity values
Table 5.5: Corrosion rate related to soil resistivity
Table 5.6: Corrosion rate estimate with resistivity and soil type
Table 5.7: Effect of soil characteristics on corrosion rate
Table 5.8: Effect of chloride on soil corrosively
Table 5.9: Effect of sulfate on soil corrosively
Table 5.10: Effect of soil drainage on corrosion rate
Table 5.11: Relationship between redox potential and corrosivity
Table 5.12: Soil aeration and redox potentials
Table 5.13: Point system for soil corrosivity
Table 5.14: Electromechanical properties of mildly corrosive soils
Table 6.1: Input simulation data
Table 6.2: Modified input simulation data for case No. 4
Table 6.3: Modified input simulation data for case No. 5
Table 6.4: Design parameters
Table 6.5: Site chemical tests
Table 6.6: Input simulation data
Table 6.7: Modified input simulation data for case No. 4
Table 6.8: Modified input simulation data for case No. 5
Table 6.9: Simulation results summary
Table 6.10: Experimental measurements for pipelines in zone A

LIST OF FIGURES

Figure 2.1: Corrosion of a pipeline due to localized anode and cathode 5
Figure 2.2: Equivalent circuit of simple corrosion cell
Figure 2.3: Theoretical conditions of corrosion, immunity, and passivation of iron – simplified pH Pourbaix-diagram for iron in water at 25 °C
Figure 2.4: Polarization curves for iron corrosion in acid
Figure 2.5: Evans diagram for simple corrosion cell
Figure 2.6: Schematic Evans diagram of three electrode reactions with the same i_{corr}
but different types of control: anodic, mixed and cathodic
Figure 2.7: Graphical representation of the processes occurring at an electrochemical
interface
Figure 2.8: Nernst diffusion layer for a limiting current situation
Figure 2.9: Schematic diagram for corrosion of metal M under diffusion control 16
Figure 2.10: Schematic showing the effect of anode to cathode area ratio on galvanic corrosion
Figure 2.11: Equivalent circuits of cathodically protected metal
Figure 2.12: Evans diagram illustrating the increasing cathodic protection (CP) current
requirements as the potential of the structure is lowered to reduce the anodic dissolution rate
Figure 2.13: Schematic illustration of the IR drop error introduced during pipeline
potential measurements at ground level
Figure 2.14: Pipe-to-soil potential as a function of time following energizing cathodic
protection system
Figure 2.15: Pipe-to-soil potential as a function of time following de-energizing
cathodic protection system27
Figure 2.16: Principle of cathodic protection with sacrificial anodes (schematic) 31
Figure 2.17: Principle of cathodic protection with impressed current (schematic) 33
Figure 2.18: Typical anode arrangements
Figure 2.19: Simple equivalent circuit of a pipeline with a remote ground bed 37
Figure 2.20: Gradients at a ground bed anode
Figure 2.21: Horizontal anode installation
Figure 2.22: Vertical anode installation
Figure 2.23: Wenner four-pin method for measuring soil resistivity
Figure 2.24: Cathodic protection of a coated pipeline
Figure 2.25: Diagrammatic curve showing distribution of potential along a coated pipe line
Figure 4.1: Electrical schematic for an operating galvanic cathodic protection system
55
Figure 4.2: Electrical schematic for an operating impressed current cathodic protection system

Figure 4.3: Polarization diagram for a sacrificial anode cathodic protection system 61
Figure 4.4: Polarization diagram for an impressed current cathodic protection system
(cable resistances are ignored). 62
Figure 5.1: The electrode/electrolyte interface (a) physical representation, (b) two-
element electrical circuit model for mechanisms of charge transfer at the
interface
Figure 5.2: The Randle's equivalent circuit model of the electrode/electrolyte
interface67
Figure 5.3: Electrical circuit model of a three-electrode/electrolyte interface system. 69
Figure 5.4: Randle's electrical circuit model for a typical corrosion cell on an
unprotected steel surface70
Figure 5.5: Schematic diagram for the electrical circuit model of electrode/electrolyte
interface in the absence of mass-transfer effects
Figure 5.6: Schematic diagram for experimentally measuring polarization resistance
by linear polarization resistance (LPR) method
Figure 5.7: Various models for estimating corrosion rate from soil resistivity
Figure 5.8: Correlation between pitting rate and resistivity
Figure 5.9: Nomogram for estimating the corrosion rate of steel pipe
Figure 6.1: Simulation model of a sacrificial anode cathodic protection system 85
Figure 6.2: Case No. 1: Simulation results for R_p (pipeline) = 1.981 Ω -m ² and R_p
(anode) = $0.3356 \Omega - m^2$
Figure 6.3: Case No. 2: Simulation results for R_p (pipeline) = 3.042 Ω -m ²
Figure 6.4: Case No. 3: Simulation results for R_p (pipeline) = 3.962 Ω -m ²
Figure 6.5: Case No. 4: Simulation results for $R_{cp,gav} = 5.625 \Omega$
Figure 6.6: Case No. 5: Simulation results for number of anodes = 3
Figure 6.7: Case No. 6: Simulation results for $R_{U,p} = 0.2 \Omega$
Figure 6.8: Case No. 7: Simulation results for R_p (pipeline) = 1.251 Ω -m ²
Figure 6.9: Case No. 8: Simulation results for R_p (pipeline) = 10Ω -m ²
Figure 6.10: Simulation model of an impressed current cathodic protection system 95
Figure 6.11: Case No. 1: Simulation results R_p (pipeline) = 2.972 Ω -m ² and R_p
(anode) = 0.016Ω -m ²
Figure 6.12: Case No. 2: Simulation results for R_p (pipeline) = 4.562 Ω -m ²
Figure 6.13: Case No. 3: Simulation results for R_p (pipeline) = 5.942 Ω -m ²
Figure 6.14: Case No. 4: Simulation results for $R_{cp,imp} = 0.331 \Omega$ as a result of placing
the anode in low resistivity soil ($\rho = 2000 \ \Omega$ -cm)
Figure 6.15: Case No. 5: Simulation results for number of anodes = 25
Figure 6.16: Case No. 6: Simulation results for voltage source $(E_{cp,imp}) = 20 \text{ V} \dots 104$
Figure 6.17: Case No. 7: Simulation results for $R_{U,p}$ is very small value (0.0005 Ω)
Figure 6.18: Case No. 8: Simulation results for R_p (pipeline) = 3.169 Ω -m ²
Figure 6.19: Case No. 9: Simulation results for R_p (pipeline) = 10Ω -m ²

LIST OF SYMBOLS AND ABBREVIATIONS

AASHTO American Association of State Highway and Transportation Officials

ASME American Society of Mechanical Engineers
ASTM American Society for Testing and Materials

 A_s Total structure surface area, (m^2) A_x Cross-sectional area of the pipe, (m^2)

AW Atomic weight of the element

AWWA American Water Works Association guidelines

A-y Ampere per year

B Empirical polarization resistance (Stern-Geary) constant, (V)

b Tafel slope or Tafel coefficient, (V/decade)

C Center-to-center spacing of anodes (anode spacing), (cm)

Ca Theoretical capacity of the anode material, (A-y/Kg)

Cathodic protection system electrochemical capacity, (A-y)

C_{dl} Double-layer capacitor of an electrode in a corrosion cell, $(\mu F/cm^2)$

Concentration of species *O* in bulk solution, (mol/cm³)

CR Penetration corrosion rate, (mm/yr)

C_r Theoretical consumption rate of the anode material, (Kg/A-y)

CSE Copper-copper sulfate reference electrode (Cu²⁺/CuSO₄ (Saturated))

D Density of the element, g/cm³

 D_o Diffusion coefficient of species O, (cm² s⁻¹) D Pipe diameter or anode diameter, (cm)

E or E_{oc} Equilibrium interfacial (Open-circuit) potential of an electrode, (V)

E_A or E_{a,oc} Open-circuit potential of the anode, (V)

 $E_{a,corr}$ ($E_{a,oc}$) Corrosion (open-circuit) potential of the anode, (V) $E_{a,p}$ Polarized (closed-circuit) potential of the anode, (V)

 $E_{a,re}$ Anode potential to remote earth, (V)

Back voltage to overcome the potential difference between the structure

& impressed current anode, (V)

Ec or Ec,oc Open-circuit potential of the cathode, (V)

E_{c,p} Polarized (closed-circuit) potential of the cathode, (V)

 $E_{cp,gav}$ Operating driving (design) voltage for the sacrificial anode system, (V) $E_{cp,imp}$ (E_{T/R}) Required power supply voltage for the impressed current system, (V)

 E_f Electrochemical efficiency of the anode (%)

E_g Galvanic voltage between the structure & impressed current anode, (V)

EIS Electrochemical Impedance Spectroscopy method

 E_{off} Off-potential or polarized potential of the structure, (V)

E_{on} On-potential of the structure, (V)

 $E_{s,corr}$ ($E_{s,oc}$) Corrosion (open-circuit or native) potential of the structure, (V) $E_{s,crit}$ Chosen cathodic protection criterion for the structure, (V) $E_{s,p}$ Polarized (closed-circuit) potential of the structure, (V)

E_{s,re} Structure potential to remote earth, (V)

EW Equivalent Weight (dimensionless)

F Faraday's constant (96,485 coulombs/mol of electrons)

F_C Crowding factor of the anode ground beds (multi-anodes) in soil

 f_c Coating breakdown factor

FHWA Federal Highway Administration g/m².d Gram per square meter in day

g' Specific leakage coating conductance, (Siemens/m²)

I Corrosion (exchange) current in corrosion cell, (A)

I_a Output current per anode, (A)

 I_{a-Max} Maximum current supplied by the anode, (A) – From anode datasheet $I_{a-Rated}$ Rated current supplied by the anode, (A) – From anode datasheet

 i_c Required current density to achieve a proper cathodic protection, (A/m²)

I_{cp} Total cathodic protection current required, (A)

 i_{corr} Corrosion current density, (A/cm²) i_L Limiting current density, (A/cm²) i_o Exchange current density, (A/cm²)

ireaction Anodic or cathodic current density, (mA/cm²)

ID Pipe inside diameter = pipe outside diameter (OD) – 2 (wall thickness) J_0 Flux of species O from bulk solution to electrode surface, (mol s⁻¹ cm⁻²)

 K_1 Constant (3.27 x 10^{-3} , mm g/μA cm yr) K_2 Constant (8.954 x 10^{-3} , g cm²/μA m² d)

L Pipe length or anode length, (cm)

L_F Anticipated service life of the cathodic protection system, (year)

LPR Linear Polarization Resistance method

Mil/year (mpy) Milli-inch per year

MMO Mixed Metal Oxide canistered anode

mm/yr Millimeters per year

MR Mass loss corrosion rate, $(g/m^2 d)$

N Number of anodes

Number of participating electrons in corrosion cell reaction

NACE National Association of Corrosion Engineers

NBS National Bureau of Standards

NIST National Institute of Standards and Technology

pH Acidity or Alkalinity of an electrolyte

Pmm Parts per million

R Universal gas constant, $(8.3145 \text{ J/mol }^{\circ}\text{K})$ R_A Effective anode resistance to electrolyte, (Ω) R_{a,re} Resistance of the single anode to remote earth, (Ω) R_C Effective cathode resistance to electrolyte, (Ω)

 R_{ca} Cable resistance, (Ω)

Positive cable resistance from the transformer rectifier to the anode

ground beds (multi-anodes) in the impressed current system, (Ω)

Cable resistance from the anode ground beds (multi-anodes) to the

 $R_{ca,g}$ structure in the sacrificial anode system, (Ω)