سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

STUDY THE STABILIZATION OF MERCURY CUPRATE

COMPOSITES (HG-1223)USING THALLIUM AND YTTRIUM

Thesis
Submitted to the Faculty of Science
Alexandria University
for the Degree of Master Science
in Physics

By Mohammed Ali Al-Hajji B. Sc. in Physics (1992) Aleppo University (Syria)

Supervised by

Prof. Dr. A. I. Abou-Aly
Prof. of Solid State Physics
Faculty of Science
Alexandria University
(Egypt)

Dr. M. T. Koryem
Associate Prof. of Solid State Physics
Faculty of Science
Alexandria University
(Egypt)

Dr. N. G. Gomaa
Associate Prof. of Solid State Physics
Faculty of Science
Alexandria University
(Egypt)

B

¥İ

1

**

ACKNOWLEDGMENTS

I would like to express sincere appreciation and deepest gratitude to Prof. Dr. A. I. Abou-Aly who suggested this point, for supervision, stimulating discussions and assistance throughout the various stages of progress of this work.

I wish to express my gratitude and deepest thanks to Dr. M. T. Koryem for supervision and assistance throughout this work and help in the final stage of this thesis.

I would like to express my sincere and deepest grateful to Dr. N. G. Gomaa for supervision and assistance throughout this work.

My thanks are due to Dr. I. H. Ibrahim Prof. of Physics, Physics Department, Faculty of Science, Alexandria University for his advices and help throughout this work.

I wish to acknowledge Dr. M. A. Fawzy Prof. of Physics, Physics Department, Faculty of Science, Alexandria University for his technical assistance.

My sincere thanks and deepest gratitude are due to Dr. R. K. Awad lecturer of physics, Physics Department, Faculty of Science, Alexandria University for guidance, assistance throughout this work and stimulating discussions.

My thanks are also due to the staff members of the Physics Department, Faculty of Science, Alexandria University.

CONTENTS

ABSIKA	AC1	
CHAPT	ER I INTRODUCTION	
1-1	General Review	1
1-2	de Electrical Resistance	11
1-3	Perfect Diamagnetism	15
1-4	Superconducting Transition temperature	17
1-5	Meissner Effect	19
1-6	Critical Currents	21
1-7	Tunnelling between two identical Superconductors	22
СНАРТ	ER II THEORETICAL BACKGROUND	
2-1	Introduction	28
2-2	Two Fluid Model	29
2-3	Nonlocal Fields	32
2-4	London Equation	33
2-5	Ginzburg- Landau Theory	
	a- Introduction	37
	b- GL Free Energy	38
	c- GL Differential Equations	45
	d- Flux Quantization	45
	e- GL Coherence Length	47
	f- Type II Superconductors	48
2-6	The Bardeen-Cooper-Sherieffer (BCS) Theory	51
	1- The Electron-lattice Interaction	54
2-7	Flux-Creep Model	63

2-8	Thermally Assisted Flux Flow Model (TAFF)	66
2-9	Crystal Structure	69
2-1	0 Electrical Structure	74
СНАРТ	TER III EXPERIMENTAL TECHNIQUE	
3-1	Introduction	80
3-2	Preparation of The Samples	81
3-3	Sample Characterisation	
	a- X-ray Diffraction	85
	b- Scanning Electron Microscope (SEM)	85
	c- Micro-Probe Analysis	86
	d- Electrical Measurements	87
	e- Cooling System	90
	f- Thermometry	92
	g- Electromagnet	92
СНАР	TER IV RESULTS AND DISCUSSIONS	
4-	1 Introduction	98
4-	2 X-ray Diffraction	98
4-	3 Scanning Electron Microscope (SEM)	105
4-	4 Micro-Probe Analysis	109
4-	5 Effect of Tl-content On the behavior of the resistance	114
4-	6 Effect of Yttrium (Y) on the transition temperature	123
4-	7 Effect of Magnetic Field	123
4	-8 Effect of Driving Current	133
4	9 Effect of Oxygen Annealing on The	
	Transition Temperature	138
CONCLUSIONS		141
REFERENCES		143
ADAB	IC SUMMARY	

*

ABSTRACT

ABSTRACT

The synthesis of Hg-cuprates at standard pressure is a difficult problem. This difficulty comes from the fact that an excess oxygen " δ " with respect to the ideal formula HgBa₂Ca_{n-1}Cu_nO_{2n+2} is necessary to stabilize the structure. An interesting way to stabilize such structure deals with partial substitution of mercury (divalent) by foreign elements with a higher valance such a Bi (trivalent) or Tl (trivalent) and Pb (tetravalent).

In this work, the substitution of thallium for mercury and yttrium for calcium has been studied. A series of samples type $Hg_{1-x}Tl_xBa_2Ca_{1.8}Y_{0.2}Cu_3O_{8+\delta} \text{ for } x=0.3,\ 0.5,\ 0.7,\ 0.9 \text{ and } 1 \text{ have been synthesized at standard pressure, using the solid state reaction technique.}$

1

The structure of these samples is determined using X-ray diffraction, the data revealed that this structure is tetragonal unit cell with space group P4/mmm. The lattice parameters "a" and "c" are calculated. The lattice parameter "a" does not change by changing Tl content, whereas "c" is decreased with increasing of Tl content.

The scanning electron microscope (SEM) and micro probe analysis were done for some samples. The data of micro probe analysis shows that the thallium ions were successfully doped into this structure.

The investigation of the superconductivity is determined by the electrical resistance measurements as a function of temperature. The results showed that the transition temperature in (Hg, Tl)-1223 phase is varied from 122 K to 134 K. The temperature dependence of resistance is studied in a temperature range from 227 K down to the transition temperature. We found that the dependence of resistance on temperature is related to the equation Y=AT+B.

The effect of weak applied magnetic field (starting from 0 up to 4.9 kG) and driving current (from 10µA to 30 mA) on the transition behavior was studied. The data of applied magnetic field shows that the magnetic field does not affect on the first stage of transition, but it only affects on the second stage of transition. The transition width is increased by increasing the applied magnetic field. We also found that the effect of driving current is similar to the effect of magnetic field.

The effect of oxygen annealing at 300 °C for 6 hours on the samples was studied. This effect enhances the transition temperature for sample x=0.3 and decreases the transition temperature for other samples. This gives an idea about underdoped and overdoped samples.

CHAPTER I

INTRODUCTION

CHAPTER I

Introduction

1-1 General review:

Superconductivity is the name to a remarkable combination of electrical and magnetic properties which appears in certain metals when they are cooled to extremely low temperatures. Such very low temperature first became available in 1908 when Kamerlingh Onnes at the university of Leiden succeeded in liquefying helium, and by its use was able to obtain temperature down to about 1 °K.

One of the first investigations which Onnes carried out in the newly available low-temperature range was a study of the variation of the electrical resistance of metals with temperature. It has been known for many years that the resistance of metals falls when they are cooled below room temperature, but it was not known to what limiting value the resistance would approach if the temperature is reduced towards 0 °K. Onnes experimenting with platinum, found that, when cooled its resistance fell to a low value which depended on the purity of the specimen. At that time the purest available metal was mercury and, in an attempt to discover the behavior of a very pure