

CONTROL OF PATHOGENIC BACTERIA IN DIFFERENT TYPES OF WATER USING NANOPARTICLES

THESIS

Submitted for a PhD degree in

Science (Microbiology)

By Noha Mohamed Mohamed Sabry

(Master of Science)

Microbiology Department Faculty of Science Ain Shams University 2019

Control of Pathogenic Bacteria in Different Types of Water using Nanoparticles

A Thesis

Submitted By

Noha Mohamed Mohmea Sabry

Water Pollution Research Department National Research Centre B.Sc. (2005); M. Sc. (2011) (Cairo University)

PhD Thesis

Under the Supervision of

Dr. Sahar Tolba Mohamed

Associate Professor of
Microbiology,
Microbiology Department
Faculty of Science,
Ain Shams University

Prof. Gamila El -Taweel

Professor of Water and Wastewater
Microbiology,
Water Pollution Research
Department,
National Research Centre

Prof. Fagr Khamis Abdel- Gawad

Professor of Genetics, Water Pollution Research Department, National Research Centre

Microbiology Department
Faculty of Science
Ain Shams University
2019

Approval Sheet

Control of Pathogenic Bacteria in Different Types of Water using Nanoparticles

Thesis submitted for a Ph.D. degree in Science (Microbiology)

By Noha Mohamed Mohamed Sabry

B.Sc. (2005); M. Sc. (2011) (Cairo University)

<u>Supervisors</u> <u>Approved</u>

Dr. Sahar Tolba Mohamed

Associate Professor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University

Prof. Gamila El-Sayed El-Taweel

Professor of Water and Wastewater Microbiology, Water Pollution Research Department, National Research Centre

Prof. Fagr Khamis Abdel- Gawad

Professor of Genetics, Water Pollution Research Department, National Research Centre

Examination committee

Prof. Shawky Zaki Sabae

Prof. of Microbiology, Head of Fresh Water and Lakes Division, National Institute of Oceanography and Fisheries

Prof. Hoda Hamed El-Hendawy

Professor of Microbiology, Faculty of Science, Helwan University

Dr. Sahar Tolba Mohamed

Associate Prof. of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University

Prof. Gamila El-Sayed El-Taweel

Professor of Water and Wastewater Microbiology, Water Pollution Research Department, National Research Centre

Examination Date: //2019 Approval date: //2019

University council approval: //2019

بيئه مِ اللهِ الرَّحْمَزِ الرَّحِيمِ

البقرة (٣٢)

صدق الله العظيم

DEDICATION

I dedicate this work to whom my heartfelt thanks; to my father, my mother, my husband, my lovely son (Omar), my brother and my sister for their patience, help and for all the support they lovely offered along the period of my post graduation.

ACKNOWLEDGEMENT

First of all, I do thank ALLAH for the gifts he has given to me.

I wish to express my sincere thanks, deepest gratitude and appreciation to **Dr. Sahar Tolba**, Assoociate Professor of Microbiology, Faculty of Science, Ain Shams University. Also, **prof. Dr. Gamila El-Sayed El-Taweel**, Prof. of Microbiology and **prof. Dr. Fagr Khamis Abdel-Gawad**, Prof. of Genetics, Water Research Pollution Department, Environmental Research Division, NRC, for supervision, continuous assistance, supporting facilities offered during the investigation, and their guidance throughout the practical work and writing of the thesis.

Deep appreciation is given to the **prof. Dr. Medhadt** Ibrahim, Prof. of Applied Spectroscopy and **Dr. Samah Bassem** Associate Prof. of Genetics, Water Research Pollution Department, Environmental Research Division, NRC, for their assistance in the present study, continuous encouragement, valuable guidance and revising the manuscript.

Grateful appreciation is also extended to all my colleagues in Biotechnology and conservation of biodiversity Group, Centre of Excellence for Advanced Science, all staff members of Water Pollution Research Dept., NRC and Microbiology Dept., Faculty of Science, Ain Shams University.

Noha Mohamed Sabry

Contents

Subject	Page
List of tables	I
List of figures	V
List of abbreviations	VII
Abstract	XI
1. Introduction	1
2. Literature review	
2.1. Lakes Ecosystem	4
2.2. Water quality monitoring	4
2.3. Pollution monitoring of lakes	5
2.4. Impact of pollution on the lakes	6
2.5. Factors influence on lake water	7
2.5.1.Pollutants	7
2.5.1.1. Point source pollution	8
2.5.1.2. Non-point source pollution	8
2.6. Qaroun Lake	9
2.6.1. Water pollution sources in Qaroun Lake	9
2.6.2. Impact of water pollution on aquatic environment	10
2.6.3. Impact of salinity on fish production	11
2.7. El-Manzala Lake	12
2.7.1. Water pollution sources in El-Manzala Lake	14
2.7.2. Impact of water pollution on aquatic environment	15
2.8. Bacterial pathogens related to fish diseases	16
2.8.1. Selection of bacterial strains based on aquaculture threats	17
2.8.2. Control of fish disease	19
2.9. Nanotechnology: classification and historical perspective	21
2.9.1. Silver nanoparticles (AgNPs)	22
2.9.2. Zinc oxide nanoparticles (ZnONPs)	23
2.9.3. Bacterial – nanoparticles interactions	23
2.9.4. Antibacterial activity of nanoparticles	24
2.10. Fish as a biomarker of polluted water	25
2.10.1. Expression of stress protein genes in fish	25 26
2.10.1.1. Heat shock proteins (HSPs) gene	26 27
2.10.1.2. Metalothionein (MT) gene 2.10.2. Micronucleus assay (MN) in fish	27
3. Materials and Methods	21
3.1. Materials	29
3.1.1. Microbiological Media	29
3.2. Methods	33
3.2.1. Study area and sampling sites	33

3.2.1.1. Qaroun Lake	33
3.2.1.2. El-Manzala lake	33
3.2.2. Sampling	34
3.2.2.1. Water sampling	34
3.2.2.2. Fish sampling	34
3.2.3. Physiochemical characterization of the samples	35
3.2.3.1. Field measurements	36
3.2.3.2. Laboratory measurements	36
I. Salinity	36
II. Dissolved oxygen (DO)	36
III. Chemical oxygen demand (COD)	36
IV. Ammonia (NH ₃)	36
V. Nitrite (NO ₂)	36
VI. Nitrate (NO ₃)	36
VII. Total Phosphorous (TP)	36
3.3. Bacteriological examination	37
3.3.1. Determination of total and fecal coliforms by MPN methods	37
a. Confirmed phase for total coliform	37
b. Confirmed phase for fecal coliform	38
3.3.2. Preparation of water and fish samples for detection of some bacterial pathogens	38
3.3.3. Detection and isolation of <i>Aeromonas hydrophila</i>	38
3.3.3.1. Confirmation of <i>Aeromonas. hydrophila</i> by biochemical characteristics	39
3.3.4. Detection and isolation of <i>Staphylococcus aureus</i>	39
3.3.5. Determination and isolation of <i>Pseudomonas aeruginosa</i>	39
3.3.6. Confirmation and identification of <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i> using BIOLOG GN II	40
3.3.7. Molecular identification of the three different isolates	40
3.3.8. Genotoxicity of fish	41
3.3.8.1. Expression of stress related genes in fish	41
a) Isolation of total RNA	41
b) Reverse transcription (RT) reaction	42
c) PCR technique	43
3.3.8.2. Micronucleus test	44
3.3.9. Antibiotic susceptibility test	44
3.3.10. Synthesis of nanoparticles (NPs):	42
3.3.10.1. Synthesis of AgNPs 3.3.10.2. Synthesis of ZnO NPs	45 45
3.3.10.3. Characterization of NPs	45
3.3.10.4. Evaluation of antibacterial activity of NPs	46
I) Organism preparation for antibacterial study	46

II) Preparation of nanoparticles for antibacterial activity	46
III) Antibacterial activity of silver and zinc oxide	46
nanoparticles coated on antibiotics	
IV) Minimum inhibitory concentration (MIC) of NPs	47
V) Determination of the effect of NPs on bacterial growth	47
VI) Toxicity assay	47
3.3.10.5. Calculation of interaction between nanoparticles	48
and bacteria 3.3.11. Statistical analysis	48
Results	40
4.1. Water quality of Qaroun lake	49
4.1.1. Physiochemical analysis of Qaroun lake water	49
a) Physical analysis of Qaroun lake water	49
b) Chemical analysis of Qaroun lake water	50
c) Nutrients profile of Qaroun lake water	50
4.2. Physiochemical analysis of El-Manzala lake water	53
a) Physical analysis of El-Manzala lake water	53
b) Chemical analysis of El-Manzala lake water	53
c) Nutrients profile of El-Manzala lake water	53
4.3. Bacteriological examination	56
8	56
4.3.1. Determination of bacterial indicators (total and fecal coliforms) by MPN method in Qaroun lake	
4.3.2. Determination of bacterial indicators (total and fecal	61
coliforms) by MPN method in El-Manzala lake	66
4.4. Determination of some pathogenic bacteria	66
4.4.1. Determination of Aeromonads group by surface plate technique in	66
A) Qaroun lake	66
B) El- Manzala lake	71
4.4.1.1. Characterization of <i>A. hydrophila</i> by biochemical reactions in Qaroun and El – Manzala lake	76
4.4.1.2. Confirmation of A. hydrophila by PCR in	76
A) Qaroun Lake	76
B) El-Manzala Lake	77
4.4.2. Determination of <i>Staphylococcus aureus</i> by surface plate technique in	79
A) Qaroun Lake	79
B) El-Manzala Lake	84
4.4.2.1. Confirmation and identification of <i>S. aureus</i> using	88
BIOLOG GN III in Qaroun and El-Manzala lake	
4.4.2.2. Confirmation of <i>S. aureus</i> by PCR in	88
A) Qaroun lake	88
B) El- Manzala lake	89

4.4.3. Determination of <i>Pseudomonas aeruginosa</i> by MPN method in	91
	91
, (96
, , , , , , , , , , , , , , , , , , ,	100
	100
A) Qaroun lake	100
B) El- Manzala lake	101
4.5. Genotoxicity of fish	103
•	103
	103
4.5.1.2. Effect of pollution on expression of metallothionein gene in fish tissues from Qaroun and El-Manzala lake	106
• · · · · · · · · · · · · · · · · · · ·	109
4.6. Antibacterial activity of nanoparticles as a control of	110
pathogenic bacteria	
4.6.1. Synthesis and characterization of nanoparticles	110
\mathcal{E}	111
	111
4.6.2. A preliminary study for determination of antibacterial activity of nanoparticles coated on antibiotic discs	113
4.6.3. Determination of Minimum inhibitory concentration (MIC)	117
4.6.4. Effect of nanoparticles on bacterial growth	117
4.7. Bacterial-nanoparticle interactions	120
4.7.1. Building model molecules of silver nanoparticles	120
	125
* * *	126
	129
* * *	132
Summery	158
· · · · · · · · · · · · · · · · · · ·	163
Appendix	
Arabic Summery	

List of tables

Table No.	Title	Page
1	primer sets for three different bacterial species	41
2	Primer sequence used for RT-PCR amplification for tilapia and mullet species	43
3	The suggested antibiotic groups of tested antibiotic	44
4	physiochemical parameters detected in four sites of Qaroun Lake during 12 months (November 2015- October 2016)	52
5	Physiochemical parameters detected in four different sites of El-Manzala Lake during 12 months (November 2015-October 2016)	55
6	Determination of total and fecal coliforms by most probable number technique (MPN- index /100 ml) in water collected from four sites of Qaroun lake during 12 months (November 2015- October 2016)	58
7	Determination of total and fecal coliforms by most probable number technique (MPN- index /g) in Tilapia fish collected from Qaroun lake during 12 months (November 2015- October 2016)	59
8	Determination of total and fecal coliforms by most probable number technique (MPN- index /g) in Mullet fish collected from Qaroun lake during 12 months (November 2015- October 2016)	60
9	Determination of total and fecal coliforms by most probable number technique (MPN- index /100 ml) in water collected from four sites of El-Manzala Lake during 12 months (November 2015- October 2016)	63
10	Determination of total and fecal coliforms by most probable number technique (MPN- index /g) in Tilapia fish collected from El-Manzala Lake during 12 months (November 2015- October 2016)	64
11	Determination of total and fecal coliforms by most probable number technique (MPN- index / g) in Mullet fish collected from El-Manzala Lake during 12 months (November 2015- October 2016)	65
12	Determination of <i>Aeromonas</i> spp. by surface plate technique (CFU /100ml) in water collected from four sites of Qaroun Lake during 12 months (November 2015-October 2016)	68
13	Determination of <i>Aeromonas</i> spp. by surface plate technique (CFU/g) in Tilapia fish collected from Qaroun	69

	Lake during 12 months (November 2015- October 2016)	
14	Determination of <i>Aeromonas</i> spp. by surface plate technique (CFU /g) in Mullet fish collected from Qaroun Lake during 12 months (November 2015- October 2016)	70
15	Determination of <i>Aeromonas</i> spp. by surface plate technique (CFU /100ml) in water collected from four sites of El- Manzala Lake during 12 months (November 2015-October 2016)	73
16	Determination of <i>Aeromonas</i> spp. by surface plate technique (CFU /g) in Tilapia fish collected from El-Manzala Lake during 12 months (November 2015- October 2016)	74
17	Determination of <i>Aeromonas</i> spp. by surface plate technique (CFU /g) in Mullet fish collected from El-Manzala Lake during 12 months (November 2015- October 2016)	75
18	Biochemical identification of <i>A. hydrophila</i> isolated from water and fish	76
19	Detection of aerolysin gene in <i>Aeromonas hydrophila</i> isolated from water and fish of Lake Qaroun	79
20	Detection of aerolysin gene in <i>Aeromonas hydrophila</i> isolated from water and fish of El-Manzala Lake	79
21	Determination of <i>Staphylococcus aureus</i> by surface plate technique (CFU / 100 ml) in water collected from four sites of Qaroun Lake during 12 months (November 2015-October 2016)	81
22	Determination of <i>Staphylococcus aureus</i> by surface plate technique (CFU /g) in Tilapia fish collected from Qaroun Lake during 12 months (November 2015- October 2016)	82
23	Determination of <i>Staphylococcus aureus</i> by surface plate technique (CFU /g) in Mullet fish collected from Qaroun Lake during 12 months (November 2015- October 2016)	83
24	Determination of <i>Staphylococcus aureus</i> by surface plate technique (CFU / 100 ml) collected from four sites of El-Manzala Lake during 12 months (November 2015- October 2016)	85
25	Determination of <i>Staphylococcus aureus</i> by surface plate technique (CFU/g) in Tilapia fish collected from El-Manzala Lake during 12 months (November 2015- October 2016)	86
26	Determination of <i>Staphylococcus aureus</i> by surface plate technique (CFU /g) in Mullet fish collected from El-Manzala Lake during 12 months (November 2015- October 2016)	87

27	Detection of 16S rRNA gene in <i>Staphylococcus aureus</i> isolated from water and fish of Qaroun Lake	90
28	Detection of 16S rRNA gene in Staphylococcus aureus	91
29	isolated from water and fish of El-Manzala Lake Determination of <i>Pseudomonas aeruginosa</i> by most probable number technique (MPN- index /100 ml) in water collected from four sites of Qaroun Lake during 12 months (November 2015- October 2016)	93
30	Determination of <i>Pseudomonas aeruginosa</i> by most probable number technique (MPN- index /g) in Tilapia fish collected from Qaroun Lake during 12 months (November 2015- October 2016)	94
31	Determination of <i>Pseudomonas aeruginosa</i> by most probable number technique (MPN- index /g) in Mullet fish collected from Qaroun Lake during 12 months (November 2015- October 2016)	95
32	Determination of <i>Pseudomonas aeruginosa</i> by most probable number technique (MPN- index /100 ml) collected from four sites of El- Manzala Lake during 12 months (November 2015- October 2016)	97
33	Determination of <i>pseudomonas aeruginosa</i> by most probable number technique (MPN- index /g) in Tilapia fish collected from El-Manzala Lake during 12 months (November 2015- October 2016)	98
34	Determination of <i>pseudomonas aeruginosa</i> by most probable number technique (MPN- index /g) in Mullet fish collected from El-Manzala Lake during 12 months (November 2015- October 2016)	99
35	Detection of 16S rRNA gene in <i>pseudomonas aeruginosa</i> isolated from water and fish of Qaroun Lake	102
36	Detection of 16S rRNA gene in <i>pseudomonas</i> aeruginosa isolated from water and fish of El-Manzala Lake	102
37	Effect of pollution on expression of HSP90 gene of tilapia and mullet tissues from Qaroun and El-Manzala Lake water	103
38	Effect of pollution on expression of metallothionein gene of tilapia and mullet tissues from Qaroun and El-Manzala Lake water	106
39	Micronucleus Frequency (%) in gills cell in the two lakes	109
40	Antibacterial activity of AgNPs coated on antibiotics	114
41	Antibacterial activity of zinc oxide nanoparticles coated on antibiotics	115

- 42 B₃LYP/LANL1DZ calculated total dipole moment, 126 HOMO/LUMO band gap energy for Ag molecules.
- B3LYP/6-311G(d,p) calculated total dipole moment as 130 Debye, HOMO/LUMO band gap energy as eV for ZnO molecules.

List of figures

Fig. No.	Title	Page
1	Location map of Qaroun lake showing four different sampling sites	35
2	Map of El-Manzala lake showing different sampling sites and sources of pollution	35
3	PCR amplification of 431 bp from <i>Aeromonas hydrophila</i> isolates. Lane M ,DNA ladder, lanes 1-4 isolates from water and lanes 5-8 isolates from fish samples	78
4	Biolog GN III profile for confirmed S. aureus	88
5	PCR amplification of 108 bp from <i>Staphylococcus aureus</i> isolates. Lane M, DNA ladder, lanes 1-4 isolates from water and lanes 5-8 isolates from fish samples.	90
6	Biolog GN III profile for confirmed P. aeruginosa	100
7	PCR amplification of 956 bp from <i>pseudomonas aeruginosa</i> isolates. Lane M, DNA ladder, lanes 1-4 isolates from water and lanes 5-8 isolates from fish samples.	101
8	RT-PCR confirmation of HSP90 gene expression in tilapia fish. RT-PCR performed with total RNAs isolated from tissues.	104
9	Effect of pollution on relative expression of HSP90 gene of tilapia tissues from Qaroun and El-Manzala Lake water.	104
10	RT-PCR confirmation of HSP90 gene expression in mullet fish. RT-PCR performed with total RNAs isolated from tissues.	105
11	Effect of pollution water on relative expression of HSP90 gene of mullet tissues from Qaroun and El-Manzala Lake.	105
12	RT-PCR confirmation of metallothionein gene expression in tilapia fish.	107
13	Effect of pollution on relative expression of MT gene of tilapia tissues from Qaroun and El-Manzala Lake water.	107