

Semi-rigid Ureteroscopy and Holmium laser stone dusting for Proximal Ureteral Stones. Does Adjuvant Tamsulosin Therapy Increase the Chance of Success?

Thesis

Submitted for Partial Fulfillment of Master Degree in Urology

*By*Peter Hanna Malky

M.B.B.Ch - Cairo University

Supervision by Prof. Dr. Hassan Sayed Shaker

Professor of Urology Faculty of Medicine – Ain Shams University

Dr. Ahmed Mohamed Emam

Lecturer of Urology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2019

Acknowledgment

First and foremost, I feel always indebted to **God**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Hassan Sayed Shaker**, Professor of Urology Faculty of Medicine – Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Ahmed Mohamed Emam**, Lecturer of Urology Faculty of Medicine – Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

Peter Hanna Malky

Dedication

Words can never express my sincere thanks to My Family and My Loving Wife for their generous emotional support and continuous encouragement, which brought the best out of me. I owe them all every achievement throughout my life.

I would like to express my everlasting gratitude to all My Professors, Colleagues and Friends, so many of them influenced, encouraged and inspired me throughout the years. I wish them the best of all.

I would like also to thank the **Patients** who agreed willingly to be part of my study and without them; I would not have been able to accomplish this work.

List of Contents

Title	Page No.
List of Abbreviations	Error! Bookmark not defined.
List of Tables	Error! Bookmark not defined.i
List of Figures	Error! Bookmark not defined.
Introduction	1
Aim of the Work	10
Review of Literature	
 The human ureter an 	d Tamsulosin11
• Ureteroscopy	18
 Laser Lithotripsy 	36
Patients and Methods	45
Results	48
Discussion	59
Summary	64
Conclusion	66
References	67
Arabic Summary	

List of Abbreviations

Full term Abb. 5-HT.....5-Hydroxytryptamine ARs..... Adrenoceptors BPH Benign prostatic hyperplasia CGRP...... Calcitonin Gene-Related Peptide DAG Diacylglycerol EHLs..... Electrohydraulic lithotriptors Fr Francium FREDDY..... Frequency-doubled, double-pulse neodymium:YAG HFU Hounsfield unit Ho: YAG..... Holmium:YAG IP 3..... Inositol trisphosphate LED.....Light-emitting diode LLs.....Laser lithotriptors MET..... Medical expulsive therapy NK...... Neurokinin NO...... Nitric Oxide NPK Neuropeptide K NPY...... Neuropeptide Y PLC Phospholipase C PLs.....Pneumatic lithotriptors PTFEPolytetrafluoroethylene SFR Stone free rate SP..... Substance P ULs Ultrasonic lithotriptors URSL Uretroscopic lithotripsy UTI...... Urinary tract infection VIP......Vasoactive intestinal polypeptide

List of Tables

Table No.	Title	Page No.
Table (1):	Comparison between age, sex, backpressure, stone size, densi creat. level and side of stone in bo	ty (HFU),
Table (2):	Comparison between operation hospitalization time, failure to restone migration and stone free weeks in both groups.	each stone, rate at 4
Table (3):	Comparison between complication post operative in both groups	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Sequential ureteral dilators	21
Figure (2):	Ballon ureteral dilator.	
Figure (3):	Modern semirigid ureteroscope	
rigure (o).	separate working/irrigation channels	
Figure (4):	Flexible ureteroscope	
Figure (5):	Flexible ureteroscopes with st	andard
	primary deflection (above) and exagg primary deflection (below)	
Figure (6):	Ninitol stone baskets	26
Figure (7):	Age	49
Figure (8):	Sex	50
Figure (9):	Degree of backpressure	51
Figure (10):	Stone size mm.	51
Figure (11):	HFU	52
Figure (12):	Creat levle	52
Figure (13):	Side of stone	53
Figure (14):	Operative time.	55
Figure (15):	Hospitalization time.	56
Figure (16):	Comparison between failure to reach stone migration and stone free rat weeks in both groups.	te at 4
Figure (17):	Comparison between complications is	
	post operative in both groups	

INTRODUCTION

Urolithiasis is a common and increasing condition. The global mankind prevalence of urinary tract stones has been estimated to be between 2% to 20% and afflicting 13% of men and 7% of women. 20% of whole urinary stones are ureteral stones, where 70% of these ureteral stones are located in the distal portion of the ureters. If intervention is indicated, some investigators prefer uretroscopic lithotripsy (URSL), which is a single procedure and has been proven to achieve a higher success rate (Ketabchi and Mehrabi, 2014).

There are three important narrowings of the ureteric lumen: at the pelvi-ureteric junction, crossing the iliac vessels and at the vesico-ureteric junction. Instrumentation and stones may get held up at these sites (Wood and Greenwell, 2016).

Three different subtypes of alpha 1 adrenoceptors (ARs) have been cloned, pharmacologically characterized and named alpha 1 A, alpha 1B, and alpha 1D, according to the indications of the International Union of Pharmacology. The distribution of ARs was alpha $1d \ge alpha 1a > alpha 1b$. Furthermore, the distal ureter expressed the highest alpha 1 AR mRNA gene, compared to other ureteral regions (Itoh et al., 2007).

Tamsulosin is a combined $\alpha 1A$ and $\alpha 1-D$ selective adrenergic antagonist, considering studies that demonstrated the existence of $\alpha 1A$ and $\alpha 1-D$ adrenoceptor subtypes in the

smooth muscle cells of the human ureter. Tamsulosin increase the intraureteral pressure above the stone and lowers the pressure below it which leads to increase the rate of stone clearance. Tamsulosin also leads to decrease in the phasic peristaltic contractions in the obstructed ureter, which leads to decrease in the painful stimulus (Caktroglu et al., 2013).

AIM OF THE WORK

We aim to evaluate whether peri-operative tamsulosin in stented ureteroscopic laser lithotripsy for proximal ureteric stones increase the procedure success rate of stone clearance.

Chapter 1

THE HUMAN URETER AND TAMSULOSIN

Physiology and Pharmacology of the Human ureter

Adrenoceptors

Alpha adrenoceptors have been detected both in animal and human ureters. Activation of 1 -adrenoceptors can activate phospholipase C (PLC), which in turn leads to formation of second messengers (inositol trisphosphate (IP 3) and diacylglycerol (DAG)) pathway and may cause contraction.

Blockage of these receptors inhibits basal tone, peristaltic frequency and ureteral contractions. Noradrenaline, an adrenergic agonist, increases ureteric peristaltic activity and muscle tone upon stimulation.

Tamsulosin, selective 1A - and 1D -antagonist, is commonly used in the management of benign prostatic hyperplasia. However, due to its selective anti-adrenergic effects, it has also successfully been used in patients with distal ureteric stones and was found to increase stone expulsion rate, decrease expulsion time and reduce the need for hospitalization and endoscopic procedures.

Beta adrenoceptors: When norepinephrine is released from adrenergic nerves, stimulation of beta adrenoceptors

activates adenylate cyclase to increase cAMP. Then, cAMP activates protein kinase A which in turn causes relaxation. (*Michel and de la Rosette*, 2006).

Muscarinic Acetylcholine Receptors

The presence of five muscarinic receptor subtypes (M 1 – M 5) were immunohistochemically shown in the human ureter. Activation of muscarinic acetylcholine receptors leads to ureteral contraction via activation of phospholipase C (PLC) (*Sakamoto et al.*, *2006*).

Nitric Oxide (NO)

L -Arginine-derived NO is the major inhibitory non adrenergic non cholinergic neurotransmitter in the lower urinary tract.

Histamine

It was demonstrated that two types of histamine receptors modulate the contractile activity of the human ureter, whereby histamine H 1 –receptors cause contraction and histamine H 2 – receptors cause slight relaxation (*Michel and de la Rosette*, 2006).

Serotonin (5-Hydroxytryptamine, 5-HT)

5-HT was shown to increase the tone of intravesical ureter via 5-HT 2A receptors.

Calcium Channel Blockers

Calcium antagonists are known to reduce ureteral contractions.

Neuropeptides

Neuropeptides such as vasoactive intestinal polypeptide (VIP), endothelins, tachykinins and angiotensins are synthesized in the lower urinary tract. Release of tachykinins, substance P (SP), neurokinin (NK) A and neuropeptide K (NPK) from sensory nerves cause excitation.

Calcitonin Gene-Related Peptide (CGRP)

CGRP inhibits electrically-evoked myogenic contractions of the ureter leading to relaxation of ureter.

Neuropeptide Y (NPY)

Potentiates phasic contractions and tone created by noradrenaline.

Tamsulosin

Pharmacokinetics

Absorption: Completely absorbed following oral administration under fasting conditions.

Distribution: Studies suggest distribution into extracellular fluids and most tissues, including kidneys, prostate, gallbladder, heart, aorta, and brown fat, with minimal distribution into brain, spinal cord, and testes. Drug is extensively bound to plasma proteins but isn't thought to affect other highly bound drugs.

Metabolism: Tamsulosin metabolized by cytochrome P-450 in the liver, with less than 10% excreted unchanged; however, pharmacokinetic profile of metabolites hasn't been established. Metabolites undergo extensive conjugation to glucuronide or sulfate before renal excretion.

Excretion: Tamsulosin excreted primarily in urine (76%); about 21% excreted in feces. Elimination half-life is 5 to 7 hours, with apparent half-life from 9 to 15 hours secondary to rate-controlled absorption pharmacokinetics (*Hermanns et al.*, 2009)

Pharmacodynamics

Tamsulosin is a combined $\alpha 1A$ and $\alpha 1$ -D selective adrenergic antagonist, considering studies that demonstrated the existence of $\alpha 1A$ and $\alpha 1$ -D adrenoceptor subtypes in the smooth muscle cells of the human ureter. Tamsulosin increase the intraureteral pressure above the stone and lowers the pressure below it which leads to increase the rate of stone clearance. Tamsulosin also leads to decrease in the phasic

peristaltic contractions in the obstructed ureter, which leads to decrease in the painful stimulus (*Cakıroglu et al.*, 2013).

Anti-BPH action: Drug selectively blocks alphalreceptors in the prostate, leading to relaxation of smooth muscles in the bladder neck and prostate, improving urine flow, and reducing BPH symptoms.

Although ureteral stones less than 5 mm could pass in up to 98% of cases, fragmented stones following lithotripsy interventions cause some degree of ureteral wall congestion and oedema, interfering with straight gravel passing and even leading to stone impaction and obstruction.

In terms of stone expulsion and control of ureteric colic pain, drugs (e.g. calcium channel blockers, nifedipine, corticosteroids, $\alpha 1$ blockers) that can modulate the function of the ureter, which may be obstructed by a stone, can be used

Many recent studies have demonstrated that the efficacy of α -blockers is preferred to the other medical expulsive therapy efficacies after laser lithotripsy and ESWL procedures for proximal ureter stones and the passing of lower ureter stones. Moreover, α -blockers, especially tamsulosin, which is a highly selective sympatholytic agent, may reduce complications after stone breaking and gravel passing in all lithotripsy procedures.