Ain Shams University Faculty of Science Zoology Department

Molecular Characterization of the Potential Antitumor Mechanisms of Certain Polyphenols and γ -irradiation in Hepatocellular Carcinoma HepG2 Cell Line.

A THESIS

Submitted for the Award of Ph.D. Degree of Science In Zoology "Molecular Biology"

 $\mathbf{B}\mathbf{v}$

Azza El-Sayed Mohamed Kaed

Supervised by

Prof. Dr. Nagwa Hassan Ali Hassan	Prof. Dr. Tarek Khaled El-Maghraby
Professor of Cytogenetics	Professor of Molecular Biology
Zoology Department	Radiation biology Department
Faculty of Science	National Centre for Radiation
Ain Shams University	Research and Technology

Zoology Department Faculty of Science Ain Shams University EGYPT

2018

{قَالُواْ سُنُهُ حَانَكَ لاَ عِلْمَ لَنَا إِلاَّ مَا عَلَّمْتَنَا • إِنَّكَ أَنْتَ الْعَلِيمُ الْحَكِيمُ }

سورة البقرة آية "32"

SUPERVISION COMMITEE

Prof. Dr. Nagwa Hassan Ali Hassan

Professor of Cytogenetics Zoology Department Faculty of Science Ain Shams University

Prof. Dr. Tarek Khaled El-Maghraby

Professor of Molecular Biology Radiobiology Department National Centre for Radiation Research and Technology (NCRRT) Atomic Energy Authority

Approval Sheet

Molecular Characterization of the Potential Antitumor Mechanisms of Certain Polyphenols and γ -irradiation in Hepatocellular Carcinoma HepG2 Cell Line.

Thesis Submitted for the Degree of Doctor of Philosophy in Science (Molecular Biology)

 $\mathbf{B}\mathbf{y}$

Azza El-Sayed Mohamed Kaed

Supervision Committee

Approved

Prof. Dr. Nagwa Hassan Ali Hassan

Professor of Cytogenetics Zoology Department Faculty of Science Ain Shams University

Prof. Dr. Tarek Khaled El-Maghraby

Professor of Molecular Biology Radiation biology Department National Centre for Radiation Research and Technology (NCRRT) Atomic Energy Authority

Date of examination: / /2018

Declaration

This thesis has not been previously submitted for any degree at this or any other University.

Azza El-Sayed Mohamed Kaed

Dedication

I dedicate this work with all my love
To the spirit of my father and mother
To my husband
To my sister, brothers
To my son, daughters

"Praise to Allah for choosing you to be my family"

ACKNOWLEDGEMENT

With the name of **ALLAH** and thanks to **ALLAH** who gave me chance to present this work hoping the benefit of the patients.

I would like to express my deepest respect and sincere gratitude to **Prof. Dr. Nagwa Hassan Ali Hassan**, professor of Cytogenetics, Zoology Department, Faculty of Science, Ain Shams University; for her generous and precious supervision, valuable advices and constant guidance, to her precious reading and valuable comments. Without her generous and valuable assistance, this work would lose its value. It is an honor working under her supervision.

I would like to express my sincere gratitude and deep thanks to **Prof. Dr. Tarek Khaled Abdellah El Maghraby**, Professor of Molecular Biology in Radiobiology Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority for suggesting and planning for this work, enrichment of the research point and valuable effort in supervising such research work.

Thanks and gratitude also to **Prof. Dr. Mohammed Ahmed Ali, and Ahmed Elsayed Mohammed** researcher
assistant at Center of Scientific Excellence for Influenza Viruses,
National Research Centre, Egypt.

I will not forget to thank all my real friends for their encouragement to exceed all barriers in my way and during the hard times.

CONTENTS

	Page
List of Abbreviations	i
List of Figures	ii
List of Tables	iv
Abstract	V
INTRODUCTION	1
REVIEW OF LITERATURE	4
• Cancer	4
 Epidemiology of cancer 	5
 Epidemiology of liver cancer in the world 	6
 Epidemiology of hepatocellular carcinoma (HCC) in Egypt 	7
 Risk factors of liver cancer 	8
• Treatment of HCC	9
Cell Cycle Regulation	10
 Types of genes linked to cancer 	13
Ionizing radiation	21
 Radiotherapy 	22
 Polyphenols 	24
 Reactive oxygen species (ROS) 	30
MATERIALS AND METHODS	32
• Study design	32
 Laboratory assays 	32
 Reagents, and materials 	32
 Preparation of HepG2 cells in flasks 	34
 Preparation of HepG2 cells in 96-wells flat bottom tissue culture plates 	35
 Irradiation 	36
 MTT assay (cytotoxicity assay) 	36
 Time-course experiment for natural high purity extract compounds form 	38
RNA extraction	40
 Synthesis of cDNA via reverse transcription RNA 	41
• Quantification of genes expression by real-time Polymerase Chain	
Reaction (rt-PCR)	42
 Estimation of Total Antioxidant Capacity (TAC) 	48
Statistical analysis	50
RESULTS	51
DISCUSSION	81
ENGLISH SUMMARY	101
REFERENCES	104
ARABIC SUMMARY	1

List of Abbreviations

AP-1 Activator protein 1 ANOVA Analysis of variance

cDNA Complementary Deoxyribonucleic Acid DMEM Dulbecco's modified Eagle's medium

DMSO Dimethyl Sulphoxide DNA Deoxyribonucleic Acid

ERK Extracellular signal-regulated kinase

Go Resting phase of cell cycle

G1 Gap between mitosis and DNA synthesis
G2 Gap between DNA synthesis and mitosis
Gy Gray (measure of dose of irradiation)

HBV Hepatitis B virus

HCC Hepatocellular carcinoma

HCV Hepatitis C virus

HepG2 Human hepatocellular carcinoma cell line Her-2/neu Human epidermal growth factor receptor 2

IC₅₀ Inhibitory concentration 50% MDM2 Mouse double minute 2 homolog

MMP9 Matrix metalloproteases 9

MTT Assay Methylthiazol tetrazolium assay

NF-kB Nuclear factor κ B P53 protein 53-kilo Daltons PBS Phosphate buffer saline

PKA Protein kinase A PKCd Protein kinase C

WHO World Health Organization
MAPK Mitogen-activated protein kinase

μg Microgram

M.W. Molecular weight μM Micromolar RNA Ribonucleic acid

r-RNA Ribosomal Ribonucleic acid

RT-PCR Reverse Transcription Polymerase Chain Reaction

ROS Reactive Oxygen species
SOD Superoxide dismutase
TCA Total antioxidant capacity

Sv Sievert

VEGF Vascular endothelial growth factor

List of figures

List of Figures

		Page
Figure (1)	The stages of the cell cycle and expression of	13
	the cyclins CDKs and their inhibitors, the CKIs.	
Figure (2)	Functions of <i>p53</i> gene.	17
Figure (3)	Chemical formula of curcumin	25
Figure (4)	Chemical formula of hesperidin	27
Figure (5)	Chemical formula of quercetin	29
Figure (6)	Unstained, Untreated HepG2 cell line under	52
•	inverted microscope	
Figure (7)	HepG2 cell lines prepared in 96-well microtiter	52
	plates, incubated, and examined under inverted	
	microscope, then treated with compounds in	
	quadrate.	
Figure (8)	The effect of curcumin on HepG 2 Cell viability	54
_	assay (MTT assay IC_{50}) $P < 0.05$.	
Figure (9)	Cell viability assay (MTT assay IC ₅₀) as a result	55
	of exposure to 2Gy (γ-irradiation) alone or	
	combined with different concentrations of	
	curcumin treatment P < 0.05.	
Figure(10)	Cell viability (MTT assay IC ₅₀) as a result of	55
	5Gy γ-irradiation alone or with different	
	concentrations of curcumin treatment, P < 0.05.	
Figure(11)	The effect of Hesperidin on HepG2 Cell	56
	viability assay (MTT assay IC ₅₀), P<0.05.	
Figure(12)	Cell viability assay (MTT assay IC ₅₀) as a result	57
	of 2Gy γ-irradiation alone or with different	
	concentrations of hesperidin treatment, $P < 0.05$.	
Figure(13)	Cell viability assay (MTT assay IC ₅₀) as a result	58
	of 5Gy γ-irradiation alone or with different	
	concentrations of hesperidin treatment, P<0.05.	
Figure(14)	The effect of quercetin on HepG2 Cell viability	59
	assay (MTT assay IC ₅₀), P<0.05.	
Figure(15)	Cell viability assay (MTT assay IC ₅₀) as a result	60
	of 2Gy γ-irradiation alone or with different	
	concentrations of quercetin treatment, P<0.05.	
Figure(16)	Cell viability assay (MTT assay IC ₅₀) as a result	61

	of 5Gy γ-irradiation alone or with different	
	concentrations of quercetin treatment, P<0.05.	
Figure(17)	p53 gene expression in HepG2 cell line treated	62
	with curcumin and/ or γ -radiation $\pm S.D.$	
Figure(18)	Quantitative real time PCR for <i>p53</i> gene	63
	expression and ±S.D. in HepG2 cell line treated	
	with hesperidin and/ or 5Gy γ-radiation	
Figure(19)	Mean and S.E. of <i>p53</i> gene expression in	64
	HepG2 cell line treated with quercetin and/ or γ-	
	radiation	
Figure(20)	Fluorescence data amplification plot of <i>p53</i>	65
	gene	
Figure(21)	The dissociation curve (melting curve) of <i>p53</i>	65
	qPCR Products.	
Figure(22)	1.5% agarose gel for PCR products of cDNA	66
	p53 gene 118 base pairs.	
Figure(23)	Her2/neu gene expression in HepG2 cell line	67
	treated with curcumin and or γ-irradiation.	
Figure(24)	Her2/neu gene expression in HepG2 cell line	68
	treated with hesperidin and or 5 Gy γ-irradiation	
Figure(25)	Her2/neu gene expression in HepG2 cell line	69
	treated with quercetin and or γ-irradiation	
Figure(26)	Amplification curves for Quantitative Real time	69
	PCR for Her2/neu gene.	
Figure(27)	melting curve of <i>Her2/neu</i> gene.	70
Figure(28)	1.5% agarose gel for <i>Her2/neu</i> gene 72bp	70
Figure(29)	MMP9 gene expression in HepG2 cell line	73
	treated with curcumin and or γ-irradiation	
Figure(30)	MMP9 gene expression in HepG2 cell line	73
	treated with hesperidin and or γ-irradiation	
Figure(31)	MMP9 gene expression in HepG2 cell line	74
	treated with quercetin and or γ-irradiation	
Figure(32)	MMP9 Quantitative real time PCR	74
Figure(33)	Melting temperature of <i>MMP9</i> Gene expression	74
Figure(34)	Illustrate MMP9 gene product 228bp verified on	75
	1.5% agarose gel	

Figure(35)	Illustrate <i>GAPDH</i> gene product verified on	75
	1.5% agarose gel	
Figure(36)	Total antioxidant capacity in case of curcumin	77
	by (µM) treatment.	
Figure(37)	Total antioxidant capacity in case of curcumin	77
	by (μM) treatment combined with 5Gy γ-	
	irradiation.	
Figure(38)	Total antioxidant capacity in case of hesperidin	78
	by (µM) treatment.	
Figure(39)	Total antioxidant capacity in case of hesperidin	79
	by (μM) treatment combined with 5Gy γ-	
	irradiation.	
Figure(40)	Total antioxidant capacity in case of quercetin	80
	by (µM) treatment.	
Figure(41)	Total antioxidant capacity in case of quercetin	80
	by (μM) treatment combined with 5Gy γ-	
	irradiation.	
Figure(42)	Modulation of various cell death pathways	90
	(Ravindran et al., 2009)	
Figure(43)	Proposed mechanism of curcumin action	96

List of Tables

		Page
Table (1)	Primers sequence for amplified genes used in	43
	quantitative real-time PCR	
Table (2)	PCR master mix per sample	44
Table (3)	the thermal cycling conditions of PCR reaction	44

V

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is the common type of liver malignancy and the high incidence. HCC is the cause of high level of mortality due to the resistance to radiotherapy and the harmful effect of chemotherapy.

Aim of the study:

- 1) To evaluate the antitumor effect of different doses of polyphenol compounds "Curcumin, hesperidin, and quercetin"
- 2) To study the ability of polyphenol compounds to decrease the unwanted side effects of radiotherapy and to increase cells radiosensitivity to respond to low doses of radiotherapy.

METHODS: HCC cells treated with different concentrations of curcumin, hesperidin, and quercetin alone or combined with different doses of γ-radiation. The cell viability examined by MTT assay to all groups in different times, and gene expressions evaluated by Real-time PCR for *P53*, *Her2/neu*, and *MMP9* genes, also total anti-oxidant capacity (TAC) had been measured.

RESULTS: The cytotoxicity mean values show significant increase, so the cell proliferation were decreased in all groups in a time and dose-dependent manner. Real-time PCR results show enhancement in gene expression levels, that p53 gene increased in all groups, but Her2/neu, and MMP9 decreased in all groups when compared with reference gene GAPDH calculated by $2-\Delta\Delta$ CT. total antioxidant capacity (TAC) were increased only by quercetin treatment at high concentrations..

CONCLUSION: Curcumin, hesperidin, and quercetin with or without γ -radiation can decrease cancer cell viability, and enhance some important gene expressions.

KEY WORDS: Hepatocellular carcinoma, γ -radiation, curcumin, hesperidin, and quercetin, real-time PCR, total antioxidant capacity (TAC).