

Conventional Photodynamic Therapy versus Fractional CO₂ Laser Assisted Photodynamic Therapy in Treatment of Onychomycosis

Thesis

Submitted for Partial Fulfillment of Master Degree in Dermatology, Andrology and Venereology

By

Mustafa Mousa Mustafa Abu Ghali M.B.B.Ch. Faculty of Medicine - Alexandria University

Under the Supervision of

Prof. Dr. Marwa M. A. Abdallah

Professor of Dermatology, Andrology and Venereology Faculty of Medicine - Ain Shams University

Prof. Dr. Mohammed Taha Mahmoud

Professor of Microbiology and Immunology Faculty of Veterinary Medicine - Zagazig University

Dr. Marwa Yassin Soltan

Lecturer of Dermatology, Andrology and Venereology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgment

First of all, all gratitude is due to \bigcirc almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Marwa M. A. Abdallah**, Professor of Dermatology, Andrology and Venereology, Faculty of Medicine, Ain Shams University, for her supervision, continuous help, encouragement throughout this work and tremendous effort she has done in the meticulous revision of the whole work. It is a great honor to work under her guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Prof. Dr.**Mohammed Taha Mahmoud, Professor of Microbiology and Immunology, Faculty of Veterinary Medicine - Zagazig University, for his continuous directions and support throughout the whole work.

Really I can hardly find the words to express my gratitude to **Dr. Marwa Yassin Soltan**, Lecturer of Dermatology, Andrology and Venereology, Faculty of Medicine - Ain Shams University, for her continuous directions and meticulous revision throughout the whole work. I really appreciate her patience and support.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Mustafa Abu Ghali

List of Contents

Title	Page No.
List of Tables	5
List of Figures	7
List of Abbreviations	10
1. Introduction	1
2. Aim of the Work	4
3. Review of Literature	5
3.1. Nail anatomy	5
3.2. Epidemiology of Onychomycosis	10
3.3. Etiopathogenesis of Onychomycosis	14
3.4. Clinical Types and Scoring Systems of Onych	
3.5. Diagnosis of Onychomycosis	37
3.6. Treatment of Onychomycosis	45
4. Patients and Methods	64
5. Results	80
6. Discussion	115
7. Conclusion and Recommendations	121
8. Summary	123
References	125
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Onychomycosis Severity Index	36
Table (2):	Factors of the Scoring Clinical Onychomycosis	
Table (3):	Description of the personal chara- medical and family history among in the study	OM cases
Table (4):	The clinical characteristics of onycleases	•
Table (5):	Description of clinical characteristic the two affected sides in the study	•
Table (6):	Types of isolated fungi in onychomyc (n. =21)	
Table (7):	Summary of macroscopic & m features of the identified fungi	-
Table (8):	Efficacy of the PDT alone in treatme	ent of OM 98
Table (9):	Tolerability of conventional PDT am cases (n.=21)	
Table (10):	The efficacy of fractional CO2 lase PDT treatment among onychomycos	
Table (11):	Tolerability of fractional CO2 laser PDT among study cases (n.=21)	
Table (12):	Comparison between right side (cor PDT) and left side (fractional Cassisted PDT)	CO2 laser
Table (13):	Comparison between right side (cor PDT) and left side (fractional Cassisted PDT) according to side effect	CO2 laser

List of Tables (Cont...)

Table No.	Title	Page No.
	Relapse rate at 6 months after end of Relation between personal	
	characteristics data and mycolo after treatment with PDT alone	ogical cure
Table (16):	Relation between personal data ar after treatment with combined treatment	

List of Figures

Fig. No.	Title Page No.
Fig. (1):	A diagram showing front view of nail anatomy 8
Fig. (2):	A diagram showing front view and lateral section of nail anatomy
Fig. (3):	Colonies of Epidermophyton floccosum17
Fig. (4):	Microsporum colonies in culture
Fig. (5):	Reverse Macromorphology of Trichophyton mentagrophytes colonies
Fig. (6):	Pathogenesis of Onychomycosis24
Fig. (7):	Distal and lateral subungual onychomycosis 27
Fig. (8):	Proximal subungual onychomycosis27
Fig. (9):	Superficial white onychomycosis
Fig. (10):	Endonyx onychomycosis
Fig. (11):	Totally dystrophic onychomycotic nails30
Fig. (12):	Candida onychomycosis of long duration with paronychia31
Fig. (13):	Chronic mucocutaneous candidiasis32
Fig. (14):	Proximity to matrix scoring34
Fig. (15):	Examples of dermatophytoma35
Fig. (16):	Dermoscopy in onychomycosis43
Fig. (17):	Dermoscopy in onychomycosis; the Spiked pattern, indentations at the proximal edge of the area with onycholysis
Fig. (18):	Schema of a photochemical reaction during photodynamic therapy

List of Figures (Cont...)

Fig. No.	Title	Page No.
Fig. (19):	Sterile scarver and petri dish which specimen collection	
Fig. (20):	Sabouraud's dextrose agar mediu chloramphenicol	
Fig. (21):	Chromogenic Candida Agar	73
Fig. (22):	Clinical variants of OM on both sic study cases.	
Fig. (23):	Box and whisker plot chart	85
Fig. (24):	Candida krusei	89
Fig. (25):	Aspergillus niger	89
Fig. (26):	Lactophenol cotton blue film show microscopic features of Aspergillus spe	•
Fig. (27):	Aspergillus gluacus	91
Fig. (28):	Scopulariopsis brevicaulis	91
Fig. (29):	Fusarium oxysprum	92
Fig. (30):	Chysosporium tropicum	92
Fig. (31):	Microscopic features of Alternaria showing colored hyphae and muriform	
Fig. (32):	Microscopy of Scytalidium dimidiatum the colored hyphae and chains of brov arthrospores.	vn-colored
Fig. (33):	The dermoscopic features in a case of disonychomycosis	
Fig. (34):	The dermoscopic features in a case superficial onychomycosis	

List of Figures (Cont...)

Fig. No.	Title	Page No.
Fig. (35):	The clinical and dermoscopic features total dystrophic onychomycosis	
Fig. (36):	Nail discoloration due to MB	97
Fig. (37):	Nail discoloration due to photosensti	zer100
Fig. (38):	Box and whisker plots showing the treatment on onychomycosis severity	
Fig. (39):	Culture after treatment on the both s	side107
Fig. (40):	A 23-years-old male with OM	108
Fig. (41):	A 44-years-female with disonychomycosis	
Fig. (42):	A 44-years-female with Aspergilluinfection	~
Fig. (43):	A 24-years-female with candida infection	
Fig. (44):	Pain during sessions on the both side	es111

List of Abbreviations

Abb.	Full term
AIDS	: Acquired immune deficiency syndrome
	: Aminolevulinic acid
	: Antigen presenting cells
	: Chromogenic Candida Agar
	: Cell-mediated immunity
	: Candida onychomycosis
	: Distal and lateral subungual onychomycosis
	: Distal nail fold
<i>DTM</i>	: Dermatophyte test medium
EO	: Endonyx onychomycosis
FDA	: Food and Drug Adminstration
HIV	: Human immunodeficiency virus
HSF	: Heat shock factor
<i>KOH</i>	: Potassium Hydroxide
<i>MAL</i>	: Methyl aminolevulinate
<i>MB</i>	: Methylene blue
<i>MHC</i>	: Major histocompatibility
<i>NDMs</i>	: Non-dermatophyes moulds
<i>NK</i>	: Natural Killer
OCT	: Optical coherence tomography
<i>OM</i>	: Onychomycosis
<i>OSI</i>	: Onychomycosis Severity Index
<i>PCR</i>	: Polymerase chain reaction
<i>PDT</i>	: Photodynamic therapy
<i>PNF</i>	: Proximal nail fold
<i>PNM</i>	: Proximal nail matrix

List of Abbreviations (Cont...)

Abb.	Full term
PSO ·	Proximal subungual onychomycosis
	Proximal white subungual onychomycosis
<i>ROS</i> :	Reactive oxygen species
<i>SDA</i> :	Sabouraud dextrose agar medium
<i>SWO</i> :	Superficial white onychomycosis
<i>TDO</i> :	$Total\ dystrophic\ onychomycosis$
TRT:	Thermal relaxation time

1. Introduction

nychomycosis is considered to be a common complex problem involving chronic nail fungal infection, which can result in nail dystrophy and discomfort. Onychomycosis is caused in most of cases by dermatophytes especially Trichophyton rubrum (Gupta et al., 2000). Clinical diagnosis of onychomycosis should be confirmed by laboratory identification of fungal elements as the clinical picture of onychomycosis may mimic other conditions like nail psoriasis and chronic nail trauma (Ameen et al., 2014). Direct microscopic examination after potassium hydroxide (KOH) preparation and fungal culture using Sabouraud medium are commonly used to confirm the diagnosis (Lawry et al., 2000).

The classical treatment modalities for onychomycosis include oral as well as topical antifungal; however, the cure rate is considered to be low and regression rate is found to be high (Gupta and Simpson, 2012; Gupta et al., 2004). Traditional systemic antifungals have the risk of multiple drug interactions and systemic side effects in some patients with systemic diseases (Shemer, 2012; Piraccini and Gianni, 2013). Several factors may lead to the poor treatment outcomes including the difficulty of achieving penetration of the nail plate, lack of adherence to treatment (which lasts for months), the poor response of some fungi to antifungals, and individual susceptibility (Robres et al.,

2015). So, there is an intense need to find other methods to assure higher cure rates and better patient satisfaction, yet with lesser side effect (*Thomas*, 2010).

Nowadays, laser and photodynamic therapy (PDT) are considered to be new nontraditional methods for treatment of onychomycosis (Grover and Khurana, 2012; Gupta and Simpson, 2012; Souza et al., 2013). PDT offers several advantages over traditional antimicrobial therapies as it has a broad spectrum of action and is effective independent of patterns of antimicrobial resistance. Moreover, it allows for the specific delivery of the photosensitizer to the infected area sparing the adjacent healthy tissue and thus, avoiding systemic side effects (Robres et al., 2015).

Photodynamic therapy involves the of use photosensitizer agents as amino levulinic acid, methyl amino levulinic acid and methylene blue followed by exposure to light source to trigger the production of reactive oxygen species (ROS) which have shown fungicidal properties (Silva et al., 2013; Figueiredo Souza et al., 2014). Figueiredo Souza et al. (2014) examined the efficacy of PDT for treatment of onychomycosis using 2% methylene blue as a photosensitizer agent following mechanical abrasion of thick nails. They showed a cure rate of 90% with minimal recurrence at 12 months post-treatment. De Oliveira et al. (2015) showed marvelous success in seven mycotic nails through the use of

fractional CO₂ laser in association with photodynamic therapy as fractional CO₂ gives immediate effect with destruction of the area affected by fungi. This allows for a deeper penetration of photosensitizer agent used in the PDT and thus, the combination provided a high success rate. However, these results need to be further verified on a larger scale of patients.

Though PDT showed a reasonable success in treatment of onychomycosis, yet there is a little clinical experience with the use of PDT in the treatment of onychomycosis and no standardized protocol exists (Robres et al., 2015).

2. AIM OF THE WORK

The aim of the current study is to evaluate two PDT approaches in the treatment of onychomycosis. The study will compare the effect of PDT using conventional method versus fractional CO₂ assisted PDT for achievement of a clinical and mycological cure in cases of onychomycosis.