سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

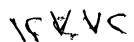
EFFECT OF SULFUR APPLICATION ON THE MAIN MORPHOLOGICAL, PHYSICAL, CHEMICAL, AND MICROMORPHOLOGICAL PROPERTIES OF SOILS, AND ON PRODUCTIONOF SOME FIELD CROPS

A Thesis

Presented to the Graduate School

Faculty of Agriculture, Alexandria University, El-Shatby
In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE


In SOIL AND WATER SCIENCES

Ву

ABD EL-HADY KHAMIS ABD EL-HALIM

B

May 2001

EFFECT OF SULFUR APPLICATION ON THE MAIN MORPHOLOGICAL, PHYSICAL, CHEMICAL, AND MICROMORPHOLOGICAL PROPERTIES OF SOILS, AND ON PRODUCTION OF SOME FIELD CROPS

Presented by

ABD EL-HADY KHAMIS ABD EL-HALIM

For the Degree of

MASTER OF SCIENCE

In

SOIL AND WATER SCIENCES

Examiners' Committee:

Prof. Dr. Refaat Ahmed H. Khalil

Professor of Soil Sciences, Head of Soil Department, Faculty of Agriculture, El-Menofiya University.

Prof. Dr. Nabil El-Husseiny Abdel-Hamid

Professor of Soil Sciences, Soil & Water Sciences Department, Faculty of Agriculture, Alexandria University, El-Shatby.

Prof. Dr. Moustafa Darwish Emara

Professor of Soil Sciences, Soil & Water Sciences Department, Faculty of Agriculture, Alexandria University, El-Shatby. **Approved**

M.D. Emaro

Date: / /2001

Advisors' Committee:

Prof. Dr. Nabil El-Husseiny Abdel-Hamid (Senior Advisor).

Professor of Soil Sciences,
Soil & Water Sciences Department,
Faculty of Agriculture,
Alexandria University, El-Shatby.

Dr. Mohamed Esmat El-Fayoumy

Associate Professor of Soil Sciences,
Soil, Water and Environment Research Institute,
Agriculture Research Center,
Ministry of Agriculture.

Dr. Ashraf Mohamed Moustafa

Associate Professor of Soil Sciences, Soil & Water Sciences Department, Faculty of Agriculture, Alexandria University, El-Shatby.

ACKNOWLEDGEMENT

The author wishes to express his thanks to *Prof. Dr. Mohamed H. El-Halfawy*, Head of Soil and Water Sciences

Department, for his encouragement during the course of this study.

It is my pleasant duty to express my gratitude to *Prof. Dr.*Nabil El-Husseiny, Professor of Soil and Water Sciences for suggesting the problem, supervision the work, continuous support, guidance and for revision of the manuscript as well.

Special thanks and deep gratitude to *Dr. Mohamed E. El-Fayoumy*, Soil, Water & Environment Research Institute, Agric. Research Center, for his great help and assistance in the work, especially in the field study.

Thanks are also due to *Dr. Ashraf M. Moustafa*, Associate Prof. of Soil and Water Sciences for his attention, support and help, especially in the micromorphological study.

Thanks are also due to *Prof.Dr. Fawzy H. Abdel-Kader, Prof.Dr. Abdel-Hakim Gomaa* and *Dr. Mohamed Bahanssy* for their assistance, and to the staff members of Nubaria Agric. Res. Station, especially, *Prof. Dr. M. Attia, Dr. M. Azab, Dr. M. Atef, Dr. H. Khalefa, Dr.H. Ramadan, Dr. A. Aawad, Mr. H. Abdel-Latef, Mr. M. Said and Mr. A. Ismail.*

Finally, the writer wishes to express his deepest gratitude to his family, especially his *mother*, his *brothers*, his *fiancée*, and all his friends for their help, and patience.

CONTENTS

ACKNIONAL EDGERGENIT	Page
ACKNOWLEDGEMENT	
LIST OF FIGURES	ii
LIST OF PHOTOGRAPHS AND PHOTOMICROGRAPHS	iii
LIST OF TABLES	iv
I- INTRODUCTION	1
II- REVIEW OF LITERATURE	3
1- Natural Existence and Main Properties of Sulfur	3
2- Occurrence and Role of Sulfur in Soils	4
2.1- Forms of Sulfur in Soils	4
2.1.1- Forms of inorganic sulfur in soils	4
2.1.2- Forms of organic sulfur in soils	5
2.2- Sulfur as a Soil Amendment and its Forms	6
2.3- Sulfur Granule-Size and its Rate of Application	8
2.4- Transformations and Behavior of Sulfur in Soils	9
2.4.1- Mineralization of organic sulfur in soils	10
2.4.2- Oxidation of inorganic sulfur in soils	12
2.4.3- Reduction of inorganic sulfur in soils	15
3- Effect of Sulfur Application on Some Main Soil Properties	16
3.1- Effect of Sulfur Application on Some Physical Properties.	10
of Soils	16
3.2- Effect of Sulfur Application on Some Chemical Properties	10
of Soils	17
3.2.1- Effect on soil reaction (pH)	17
3.2.2- Effect on the electrical conductivity of soils (EC.)	19
3.2.3- Effect on sulfates and gypsum content in soils	20
3.3- Effect of Sulfur Application on Soil Micromorphology	20
4 Effect of Sulfur Application on Plant Crowth and Nutriente	
4- Effect of Sulfur Application on Plant Growth and Nutrients Uptake	22
4.1- Effect of Sulfur Application on Plant Growth of Some	22
Different Crops	22
4.2- Effect of Sulfur Application on Plant Growth of Wheat	24
4.3- Effect of Sulfur Application on Plant Growth of Corn	2 4 25
4.4- Effect of Sulfur Application on Plant Growth of Faba bean	25 26
4.5- Effect of Sulfur Application on Nutrients Uptake	20 27
THE MICOLDI CHIMI AMDITCHICII DII INGLICING CHATANT	- 5

-ii-	Page
III- MATERIALS AND METHODS	28
[I]- Field Work	28
1- The Field Experiment	28
1.1- Characteristics of the Experimental Site	28
1.2- The Experiment Design	30
1.3- Cultivated crops	31
1.4- Applied Fertilizers	
1.5- Measured Crop Characters.	32
2- Morphological and Hydrophysical Studies of Soils	33
2.1- Morphological Studies and Soil Sampling	33
2.2- Soil Cumulative Infiltration (Z, m)	33
2.3- Soil Bulk Density (Db, g/cm ³)	34
2.4- Soil Hydraulic Conductivity (K _h , cm/hr)	34
2.5- Plant Characters	34
[li]- Laboratory Work	35
1- The Laboratory Experiment	35
1.1- The Used Soil Samples	35
1.2- The Plastic Columns	36
1.3- Preparation of the Soil-Sulfur Mixtures	36
1.4- Packing of the Prepared Soil-Sulfur Mixtures	36
1.5- Wetting and Drying Cycles	37
2- Laboratory Studies and Analyses	38
2.1- Morphological Observations and Measurements for the	· -
Different sulfur Treatments	39
2.1.1- Morphological observations	39
2.1.2- Coefficient of linear extensibility (COLE)	39
2.1.3- Percentage of vertical expansion and shrinkage	
(PVES)	39
2.2- Physical Analysis	40
2.2.1- Particle size distribution	40
2.2.2- Soil bulk density (Db, g/cm³)	40
2.2.3- Total soil porosity (E, %)	40
2.2.4- Soil hydraulic conductivity (k _h , cm/hr)	40
2.3- Chemical Analysis of Soils and Plants	41
2.3.1- Electrical conductivity (EC, dS/m)	41
2.3.2- Soil reaction (pH)	41
2.3.3- Soluble cations and anions (meq/L)	41
2.3.4- Total carbonates (CaCO ₃ , %)	42
2.3.5- Gypsum content (CaSO ₄ .2H ₂ O, %)	42
2.3.6- The (SAR) and (ESP) values	· 42

•

LIST OF FIGUERS

Fig(1): Natural transformations of sulfur in soils (after Paul and Clark, 1989)
Fig(2):Location map for sites of the carried out field experiment, and of the collected soil samples
Fig(3):Schematic diagram illustrating the saturation process of the soil-sulfur mixtures in the plastic columns by capillarity.
Fig(4):Effect of sulfur application on coefficient of linear extensibility (COLE) for clay and calcareous soils
Fig(5):Effect of sulfur application on vertical expansion for clay and calcareous soils
Fig(6):Effect of sulfur application on vertical shrinkage for clay and calcareous soils
Fig(7):Effect of sulfur application on the field bulk density (Db, g/cm³) of calcareous soil of the field experiment
Fig(8):Effect of sulfur application on the field total porosity (E, %) of calcareous soil of the field experiment
Fig(9):Effect of sulfur application on the field hydraulic conductivity (K _h , cm/hr) of calcareous soil of the field experiment
Fig(10):Relation between elapsed time (min) and cumulative Infiltration (m) after 300 minutes for the different sulfur treatments of the field experiment
Fig(11):Effect of sulfur application on the cumulative infiltration (Z, m) for the different treatments of the field experiment
Fig(12):Effect of sulfur application on the laboratory bulk density (Db, g/cm³) of clay and calcareous soils
Fig(13):Effect of sulfur application on the laboratory total porosity (E, %) of clay and calcareous soils
Fig(14):Effect of sulfur application on the laboratory hydraulic conductivity (K _h , cm/hr) of clay and calcareous soils Fig(15):Effect of sulfur application on electrical conductivity (EC,
dS/m) of calcareous soil of the field experiment Fig(16):Effect of sulfur application on pH of calcareous soil of the
field experiment
sulfates (SO ₄ ⁻ , meq/L) in calcareous soil of the field experiment.
Fig(18):Effect of sulfur application on gypsum content (%) in calcareous soil of the field experiment
Fig(19):Effect of sulfur application on electrical conductivity (EC, dS/m) of clay and calcareous soils of the laboratory experiment