

بسم الله الرحمن الرحيم

-Call 6000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

DISTURBANCE OF SOME ELECTROLYTES AND TRACE ELEMENTS BEFORE AND AFTER HEMODIALYSIS IN RENAL FAILURE AND TRANSPLANTED PATIENTS

Thesis submitted by

SAYEDA HAMAD ABD EL HAMID

For the fulfilmment of Master Degree of Science in (Biochemistry)

Under supervision of

Prof. Dr. MOHAMED O. I. REFAIE

Prof. Of Biochemistry

Lab. of Biochemistry

Faculty of science

Cairo University

Dr. MOHAMED ALY EL-DESOUKY
Lecturer Of Biochemistry
Lab. of Biochemistry
Faculty of science
Cairo University

Dr. AHMED IBRAHIM AMIN
Lecturer Of Biochemistry
Lab. of Biochemistry
Faculty of science
Cairo University

11778

Faculty of Science
Cairo University
2005

APPROVAL SHEET FOR SUBMISSION

Title of (master) thesis: DISTURBANCE OF SOME ELECTROLYTES AND TRACE ELEMENTS BEFORE AND AFTER HEMODIALYSIS IN RENAL FAILURE AND TRANSPLANTED PATIENTS.

Name of the candidate: Sayeda Hamad Abd El Hamid

This thesis has been approved for submission by the supervisors:

1- Prof. Dr. Mohamed O.I. Refaie.

Signature:

2- Dr. Mohamed Aly El-Desouky

Signature:

3- Dr. Ahmed Ibrahim Amin

Signature:

Prof. Dr. Rifaat H. Hilal

Chairman Of Chemistry Department

Faculty Of Science Cairo University.

APPROVAL SHEET FOR SUBMISSION

Title of (master) thesis: DISTURBANCE OF SOME ELECTROLYTES AND TRACE ELEMENTS BEFORE AND AFTER HEMODIALYSIS IN RENAL FAILURE AND TRANSPLANTED PATIENTS.

Name of the candidate: Sayeda Hamad Abd El Hamid

This thesis has been approved for submission by the supervisors:

1- Prof. Dr. Mohamed O.I. Refaie.

Signature:

2- Dr. Mohamed Aly El-Desouky

Signature:

3- Dr. Ahmed Ibrahim Amin

Signature:

Prof. Dr. Rifaat H. Hilal

Chairman Of Chemistry Department Faculty Of Science Cairo University.

ABSRTRACT

Name: Sayeda Hamad Abd El Hamid

Title of Thesis:

DISTURBANCE OF SOME ELECTROLYTES AND TRACE ELEMENTS BEFORE AND AFTER HEMODIALYSIS IN RENAL FAILURE AND TRANSPLANTED PATIENTS.

Degree (Master) Thesis, Faculty Of Science, Cairo University, 2002/2003.

Renal failure is associated with a disturbance of some electrolytes and trace elements metabolism. The presence of renal failure contributed to the regulation of blood levels of phosphate and the exerction rate of potassium and sodium. Our study which consisted of a healthy control subjects (GI). Patients undergoing hemodialysis (HD) (GII), the same patients were classified under (GIIA) before HD & (GIIB) after HD, renal transplanted patients (GIII); aims to determine some electrolytes and trace elements in sera of these groups. Experimental data have shown singificant increase in sera magnesium (Mg); copper (Cu) and manganese (Mn) of patients after HD, as compared to the same patients before HD. A significant decrease in sera magnesium (Mg), was recorded in transplanted patients; while the level of manganese (Mn) was significantly elevated as compared with control group. Moreover, the level of serum cadmium (Cd) was significantly increased in patients before and after HD as compared with control group. On the other hand, the level of serum cadmium (Cd) in patients after HD was significantly decreased as compared to the same patients before HD. In addition, the level of sodium (Na); potassium (K); caldium (Ca) and phosphorus (P) in human sera were closely related to the renal failure. In conclusion, early monotoring of serum hemodialysis are important for abnormalities in patients undergoing hemodialysis are important for prevention any complications.

Key words: Magnesium, Cadmium, Manganese, Copper, Chronic Renal Failure.

Supervisors:

(1) Prof. Dr. Mohamed O.I. Refaie.

Signature: V

(2) Dr. Mohamed Aly El-Desouky

Signature:

(3) Dr. Ahmed Ibrahim Amin

Signature:

Prof. Dr. Rifaat H. Helal

Chairman Of Chemistry Lepartment Faculty Of Science Cairo University.

ABSRTRACT

Name: Sayeda Hamad Abd El Hamid

Title of Thesis:

DISTURBANCE OF SOME ELECTROLYTES AND TRACE ELEMENTS BEFORE AND AFTER HEMODIALYSIS IN RENAL FAILURE AND TRANSPLANTED PATIENTS.

Degree (Master) Thesis, Faculty Of Science, Cairo University, 2002/2003.

Renal failure is associated with a disturbance of some electrolytes and trace elements metabolism. The presence of renal failure contributed to the regulation of blood levels of phosphate and the exerction rate of potassium and sodium. Our study which consisted of a healthy control subjects (GI). Patients undergoing hemodialysis (HD) (GII), the same patients were classified under (GIIA) before HD & (GIIB) after HD, renal transplanted patients (GIII); aims to determine some electrolytes and trace elements in sera of these groups. Experimental data have shown singificant increase in sera magnesium (Mg); copper (Cu) and manganese (Mn) of patients after HD, as compared to the same patients before HD. A significant decrease in sera magnesium (Mg), was recorded in transplanted patients; while the level of manganese (Mn) was significantly elevated as compared with control group. Moreover, the level of serum cadmium (Cd) was significantly increased in patients before and after HD as compared with control group. On the other hand, the level of serum cadmium (Cd) in patients after HD was significantly decreased as compared to the same patients before HD. In addition, the level of sodium (Na); potassium (K); caldium (Ca) and phosphorus (P) in human sera were closely related to the renal failure. In conclusion, early monotoring of serum hemodialysis are important for abnormalities in patients undergoing hemodialysis are important for prevention any complications.

Key words: Magnesium, Cadmium, Manganese, Copper, Chronic Renal Failure.

Supervisors:

(1) Prof. Dr. Mohamed O.I. Refaie.

Signature:

(2) Dr. Mohamed Aly El-Desouky

Signature:

(3) Dr. Ahmed Ibrahim Amin

Signature:

Prof. Dr. Rifaat H. Helal

Chairman Of Chemistry Department Faculty Of Science Cairo University.

AKNOWLEDGEMENT

I would like to express my deep thanks and gratitude to professor Dr. Mohamed Osman Ibrahim Refaie, professor of biochemistry, labe of Biochemical Analysis, faculty of science, university of Cairo for his supervision, appreciated advice, and the facilities, he offered to carry out this work and sincere cooperation without, he this work would not have been possible.

I am also grateful and offer deep thanks to Dr. Mohamed Aly El-Desouky, lecturer of biochemistry, faculty of science, university of Cairo. And Dr. Ahmed Ibrahim Amin lecturer of biochemistry, faculty of science, university of Cairo. For their supervisions, valuable suggestions, encouragement and all possible help, they kindly offered throughout the course of this work.

Great thanks also to Dr. Mohamed masoad, the general manger of Omm El-Massryeen laboratory, for his cooperation encouragement and all possible help.

I would like to express my deep thanks and gratitude to Dr. Mohamed Abd El-Aziz, the general maneger of Omm El-Massryeen Hospital, El Tammin El sehy, for his encouragement

And the facilities and all possible help.

Especial appreciation is expressed to my parents, brothers and sisters for their patience, and understanding which encouraged me throughout this study.

CONTENTS

CHAPTERS		PAGE
!-	INTRODUCTION AND AIM OF THE WORK	
I-1	Biochemical function of normal kidney and acid- base disorders	1
I-2	Chronic and acute renal failure	9
I-3	Hemodialysis and renal transplantation	12
I-4	Trace elements	19
Part II	Glutathione peroxidase in anamalian erythrocytes	23
I-5	Aim of the work	24
II-	REVIEW OF LITERATURE DATA	
II-1	Copper metabolism and its clinical significance	25
II-2	Elevated plasma copper in chronic renal failure	31
II-3	Manganese metabolism and its clinical significance	31
II-4	Magnesium metabolism and its clinical significance	34
II-5	Relationship between calcium, magnesium, and phosphates concentrations,in hemodialyzed patients being treated by regular hemodialysis	37
II-6	Relationship between circulating ionized and total magnesium in chronic renal failure patients	40
II-7	Magnesium content in tissues and bones of uremic patients on chronic hemodialysis	41
II-8	Cadmium metabolism, and its clinical significance	45
111-	SUBJECTS MATERIALS AND METHODS	85

CHAP	TERS	PAGE
III-1	Subjects, Materials and Methods	52
III-2	Atomic Absorption Spectrophotometer	54
III-3	Determination of serum magnesium	55
III-4	Determination of serum copper	58
III-5	Determination of serum manganese	60
III-6	Determination of serum cadmium	62
III-7	Determination of serum sodium	63
III-8	Determination of serum potasium	65
III-9	Determination of serum calcium	67
III-10.	Determination of blood sugar	69
III-11	Determination of blood urea	72
III-12	Quantitative estimation of serum creatinine	74
III-13	Determination of serum uric acid	76
III-14	Determination of serum transaminases	78
III-15	Determination of hemoglobin	82
Part II	Determination of glutathione peroxidase in erythrocyte lysate	84
IV-	EXPERIMENTAL RESULTS	86
IV-1	Magnesium	86
IV-2	Copper	90
- IV-3	Manganese	94
IV-4	Cadmium	98
IV-5	Glutathione peroxidase	
. V-	DISCUSSION	110
VI-	ENGLISH&ARABIC SUMMARY	130
VII-	REFERENCES	133

Ä

LIST OF ABBREVIATIONS

CRF chronic renal failure

GFR glomerular filtration rate

BUN blood urea nitrogen

P(cells) principal cells

I(cells) intercalated cells

ESRD end stage renal failure

ARF acute renal failure

ATN acute tubular necrosis

CCPD continuous cyclic peritoneal dialysis

CAPD continuous ambulatory peritoneal dialysis

IPD intermittent peritoneal dialysis

ECC extracorporeal circuit

HLA human leukocyte antigens

SOD superoxide dismutase

PCA principal component analysis

NPC nasopharyngeal cancer

ESADDI estimated safe and adequate dietary intake

TPN Total parenteral nutrition

Mg-prot. protein – bound magnesium

iMg⁺² ionized magnesium

Mg compl. magnesium complexed with anions

Mg ultr. ultrafiltrable magnesium

ROD renal osteodystrophy

BMg bone magnesium

DMg dialysate magnesium

SMg serum magnesium

FRTR feline renal transplant recipients

WHO world health organization

NAG N - acetyle – glucosaminidase

GSH-Px Glutathione peroxidase