Epileptiform activities in the EEG of Children with Attention Deficit Hyperactivity Disorder

Chesis

Submitted for fulfillment of Ph.D. degree in childhood studies

Department of medical studies for children

Prepared by

Rama Ahmed Mahmoud Mansour

Supervised by

Dr. Olweya Mohamed Abdel Baky

Professor of child psychiatry
Faculty of Post Graduate Childhood Studies

Dr. Hanan Hosny Abdel Aleem

Professor of Clinical Neurophysiology Benisuef University

Dr. Reham Sabrey Tarkan

Lecturer of medical childhood studies
Faculty of Postgraduate Childhood Studies
Medical Studies Department

Ain Shams University Faculty of Medicine 2018

سورة البقرة الآية: ٣٢

First and Foremost, I would like to give all my thanks to ALLAH the almighty.

I also extent my thanks and great appreciation to Dr. Olweya Mohamed Abdel Baky Professor of child psychiatry. Faculty of Post Graduate Childhood Studies. Dr. Hanan Hosny Abdel Aleem Professor of Clinical Neurophysiology. Faculty of medicine. Benisuef University. And Dr. Reham Sabrey Tarkhan Lecturer of medical childhood studies, Faculty of Postgraduate Childhood Studies Medical Studies Department Ain Shams University.

For giving me the chance of finishing this work under their supervision and giving me much of their effort, work and time.

I also wish to express my thanks to all my patients for their patience and cooperation.

Rama Ahmed Mahmoud Mansour

Dedication

I would like to dedicate this work to my mother, the soul of my father, to my husband, my children, my brother and to all my family for supporting me all through my way to finish this work.

Contents

Subject	Page
Contents	
List of Tables	
List of Figures	III
LIST OF ABBREVIATIONS	IV
Introduction	1
Aim of the study	5
Review of Literature	6
Chapter (3) Attention Deficit Hyperactivity Disorder(ADHD):	6
Chapter (33) Electroencephalography (EEG)	30
Chapter (III) Epileptiform Activity (wave discharges)	41
Chapter (30) Rolandic spikes in ADHD	48
Chapter (**(**)* Medication in patients of ADHD and EA	54
Subjects and methods	69
Results	75
Discussion	103
Conclusion	120
Recommendations	121
References	122
اللخص العربي	1

List of Tables

Oane To. Ome Lage To.	
Table (1): Descriptive data of studied patients	75
Table (2):pregnancy history and birth (postnatal) history distribution among	
ADHD cases.	78
Table (3): Speech problems among ADHD cases.	80
Table (4): past history and family psychiatric disorders history among ADHD	
cases	80
Table (5): The mean and standard deviation of the quantitative variables	
among ADHD cases	82
Table (6): DSM V Classification among ADHD cases	83
Table (7): Conner's ADHD Index among ADHD cases	84
Table (8): Epileptiform activity in the studied cases	85
Table (9): EEG findings(focal, generalized) among ADHD cases	86
Table (10): ADHD type and severity in generalized and focal types of	
epileptiform activity	87
Table (11): Comparison of epileptiform activities in the EEG of ADHD cases	
among two groups of age category	89
Table (12): Relation between post natal events and epileptiform activities in the	
EEG of ADHD cases.	91
Table (13): Relation between speech problems and epileptiform activities in the	
EEG of ADHD cases.	92
Table (14): Comparison of epileptiform activities in the EEG of ADHD cases	
among types of ADHD according to DSM V classification	94
Table (15): Comparison of post natal events among types of ADHD according	
to DSM V classification.	96
Table (16): Comparison of epileptiform activities in the EEG of ADHD cases	
among Conner's ADHD Index grades	97
Table (17): Comparison of different types of speech problems in relation to	
DSM V and Conner's scale of ADHD cases.	99
Table (18): Comparison of IQ mean in different epileptiform activities in the	
EEG of ADHD cases	101
Table (19): Correlation between Type of EA activity, ADHD type and	
ADHD severity	102

List of Figures

Figurers	No.	Title	Page No.
\cup 0	- C·		C = 0 - C

Fig(1): presents and illustrates the areas in the brain that have been shown to be different	
in patients with ADHD.	
Fig(2): dopaminergic reward structures in the brain:	
Fig(3):Dopamine Pathways.	
Fig(4): Representing Transfer of dopamine cell signalling to predictive cues and behaviors.	
Fig(5): Presenting the relation between levels of organization in ADHD	.27
Fig(6): Vesicles carry dopamine to the nerve ending and release it. Then the transporters then pick up the dopamine and release it into the synapse between two nerve endings. Finally, receptors on the second nerve ending attach to the dopamine, and this nerve passes the neurochemical signal to the next one	
Fig(7): the international 10-20 system placement.	
Fig(8): Sex distribution among studied patient	
Fig(9): Type of delivery of studied patient	
Fig(10): pregnancy history distribution among ADHD cases.	
Fig(11): Postnatal events distribution among ADHD cases.	
Fig(12): Speech problems among ADHD cases.	
Fig(13): past history among ADHD cases	.81
Fig(14): Family psychiatric history among ADHD cases	.81
Fig(15): DSM V Classification among ADHD cases.	.83
Fig(16): Conner's ADHD Index among ADHD cases	. 84
Fig(17): Epileptiform activity in the studied cases.	. 85
Fig(18): EEG findings among ADHD cases.	.86
Fig(19): ADHD type and severity in generalized type of epileptiform activity	.88
Fig(20): ADHD type and severity in focal of epileptiform activity	.88
Fig(21): Comparison of background activity in the EEG of ADHD cases between two groups of age category	
Fig(22): Relation between speech problems and background activity	
Fig(23): Relation between speech problems and Left central	
Fig(24): Comparison of right frontal activities in the EEG of ADHD cases among types of ADHD according to DSM V classification.	
Fig(25): Comparison of post natal events among types of ADHD according to DSM V classification.	
Fig(26): Comparison of generalized activities in the EEG of ADHD cases among Conner's ADHD Index grades	
Fig(27): Comparison of different types of Speech problems in relation to DSM V	100
Fig(28): Comparison of different types of Speech problems in relation to Conner's scale of ADHD cases.	100
Fig(29): Comparison of IQ mean in Rt Frontal activities in the EEG of ADHD cases	

LIST OF ABBREVIATIONS

ACTeRs : comprehensive teacher rating scale and parent form

ADHD : attention deficient hyperactivity disorder

ADHD-RS : attention deficient hyperactivity disorder rating scale

AED : antiepileptic drugs

ATX : atomoxetine

BECTS: benign epilepsy with centrotemporal spikes

COMT : catechol- o- methyl- transferase

CPs : cycle per second

CRS-R : Conner's revised

DAT1 : dopamine transporter 1

DBH : dopamine B-receptor

DR : dopamine receptor

DSMV: Diagnostic and Statistical Manual of Mental Disorders,

5th edition.

DTD : dopamine transporter deficit

EA : epileptiform activity

ED : epileptiform discharge

EEG : electroencephalography

GAF : global assessesmnt of function

IED : interictial epileptiform discharges

List of Abbreviations

IQ : intelligent quotient

LEV : levetiracetam

MPH : methyl phenidate

NET : norepinephrine transporter

NIMH : national institute of mental health

OCD : obsessive compulsive disorder

PA : paroxysmal abnormality

RDOC : research dopamine criteria

SNAP : synaptosomal - associated protein

SNC : substancia nigra

VNTR : variable number tandom repeats

VPA : valproic acid

VTA : ventral tegmental area

Abstract

Introduction: Attention deficit hyperactivity disorder (ADHD) is characterized by heightened impulsivity, inattention, and hyperactivity.

One of changes in EEG of ADHD children is epileptiform activity (EA), characterized by recording of excessive neuronal discharge.

Objectives: identifying encephalographic epileptiform activity in (ADHD) children and its relation to types of ADHD.

Methodology: All ADHD cases from the Centre of special need children within the year of 2015 were examined (4 days / week), 50 cases were enrolled and EEG epileptiform abnormalities were recorded.

Results:

A total of 4 cases (8%) presented with generalized epileptiform activities and 23 (46%) presented with focal epileptiform activities.

There was a statistical significant correlation between type of epileptiform activity and ADHD severity (r=-0.467) (p=0.014).

There was a statistical significant difference between age groups and background abnormalities where (75.9% of >7group) compared to (28.6% of < or = 7 group) had abnormal background (χ^2 =12.052, p=0.002), ADHD severity and generalized epileptiform activity (χ^2 = 8.269, p=0.016), where 40% of mild, compared to (10% moderate and 2.9% of the marked) type of ADHD cases had generalized activity. And a highly statistical significant difference between speech problems and ADHD severity (χ^2 = 19.179, p=0.004), where all reversal group was of moderate, and (75%) of delayed group was of the marked type.

Conclusion: Epileptiform activities were detected in ADHD children with the focal (46%) and generalized (8%) type with the marked combined type mostly presented in the focal group.

Keywords: Attention Deficit Hyperactivity Disorder (ADHD), Electroencephalography (EEG), Epileptiform activity (EA).

Introduction

Introduction:

Attention deficit hyperactivity disorder (ADHD) in children is defined to be characterized by heightened impulsivity, inattention, and hyperactivity (DSM V, 2013).

Moreover increased public awareness and escalation of risk factors has been accompanied by an increased rate of ADHD diagnosis among children, along with a rise in medication use *(CDC, 2014)*.

Psychiatric American Furthermore the Association's Diagnostic and Statistical Manual, Fifth edition (DSM-5), is used by mental health professionals to help diagnose ADHD. It was released in May 2013 and replaces the previous version, the text revision of the fourth edition (DSM-IV-TR). There were some changes in the DSM-five for the diagnosis of ADHD: where symptoms can now occur by age 12 rather than by age 6; several symptoms now need to be present in more than one setting rather than just some impairment in more than one setting; new descriptions were added to show what symptoms might look like at older ages; and for adults and adolescents age 17 or older, only 5 symptoms are needed instead of the 6 needed for younger children (DSM V, 2013).

For these reasons it is crucial that children with ADHD are treated appropriately as they can develop significant psychosocial, educational, and neuropsychological impairment. They are also at risk of not achieving their highest potential in education and employment as adults. Where Behavioral therapy in addition to medications are central to the management of ADHD, resulting in greater improvements in academic performance, reduction of behavioral problems, and higher parental satisfaction (Sibley et al., 2014).

Many authors had reported that the prevalence of ADHD in childhood epilepsy is higher than in the general population and as is the rate of epilepsy in ADHD. Both attention deficit hyperactivity disorder (ADHD) and epilepsy are common disorders in childhood. ADHD and epilepsy can be detrimental to the behavior, learning and social relations of affected children. Children with epilepsy and ADHD together tend to be at a higher risk of school difficulties compared with children who suffer from epilepsy only (*Idiazabal and Alecha*, 2012).

As mentioned by authors Attention-deficit hyperactivity disorder (ADHD) and epilepsy are major reasons for referral of children to pediatric neurologists. The presence of both these disorders in a single patient poses a particular therapeutic challenge. That's why many Concerns have been raised that antiepileptic drugs may exacerbate already malfunctional social

and academic behaviors in ADHD children, and that exposure to stimulants can aggravate epilepsy in those children (*Kaufmann et al.*, 2009).

Moreover many previous researches on children with unprovoked seizures shows that behavioral disturbance are more common before the onset of the first seizure attack compared to controls (Austin et al., 2001).

Also EEG studies in children with ADHD are searching for data with respect to various brain function aspects. Where one of the alterations that can occur in an EEG of ADHD children is that of epileptiform activity (EA), characterized by electrographic elements that correspond to the recording of excessive neuronal discharge and abnormal components of the basic epilepsy mechanism. EA can occur with less frequency in non-epileptic individuals. A greater recording of EA has been described in ADHD children than in normal children (*Richer et al.*, 2002).

Moreover it was stated that a high incidence of pathological encephalography (EEG) findings had been reported in school aged children with ADHD, but the range was wide from 6.1% of 476 to 30.1% of 176 children possibly indicating methodological differences (*Richer et al., 2002*).

For that reason some researchers recommended that all children suspected to have ADHD undergo encephalography

examination for their brain regardless of the presence of seizures (Becker et al., 2004).

On the other hand behavioral symptoms of inattention, impulsivity, and hyperactivity serve as a foundation for the diagnosis of attention-deficit/ hyperactivity disorder (ADHD). Where various states of alertness, behavioral inhibition, and information processing have been associated with the electrical currents (alternating and direct) produced by the brain and the variation in alertness and behavioral control reflects the activity of specific thalamocortical generator mechanisms and the arousal of the prefrontal cortex which are noted on surface EEG recordings (Monastra, 2008).

Aim of the study

To identify the encephalographic epileptiform activity in the electroencephalography of children with attention deficit hyperactivity disorder and its relation to different types of attention deficit hyperactivity disorder, after diagnosing and classifying the attention deficit hyperactivity disorder cases according to the Diagnostic and Statistical Manual of Mental Disorders, 5th edition, and Conner's parent rating scale.