

NUMERICAL SIMULATION OF SMOKE MANAGEMENT SYSTEM IN SPRINKLERED CAR PARKS

by **Dalia Essam Eldin Khalil**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Mechanical Power Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

NUMERICAL SIMULATION OF SMOKE MANAGEMENT SYSTEM IN SPRINKLERED CAR PARKS

by

Dalia Essam Eldin Khalil

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Mechanical Power Engineering

Under the Supervision of

Prof. Dr. Samy Mourad Morcos

Professor, Mechanical Power Engineering Department, Faculty of Engineering, Cairo University

Prof. Dr. Mohamed Mahmoud Ali Hassan

Professor, Mechanical Power Engineering Department, Faculty of Engineering, Cairo University

Prof. Dr. Ahmed A. Fahim

Professor, Housing and Building National Research Centre

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2019

NUMERICAL SIMULATION OF SMOKE MANAGEMENT SYSTEM IN SPRINKLERED CAR PARKS

By

Dalia Essam Eldin Khalil

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Mechanical Power Engineering

Approved by the Examining Committee

Prof. Dr. Samy Mourad Morcos (Thesis Main advisor)

Professor, Mechanical Power Engineering Department, Faculty of Engineering, Cairo University

Prof. Dr. Mohamed Mahmoud Ali Hassan

(Thesis advisor)

Professor, Mechanical Power Engineering Department, Faculty of Engineering, Cairo University

Prof. Dr. Mahmoud Ahmed Fouad (Internal Examiner)

Professor, Mechanical Power Engineering Department, Faculty of Engineering, Cairo University

Prof. Dr. Osama Ezzat Abdel-Latif (External Examiner)

Professor, Mechanical Power Engineering Department, Shobra Faculty of Engineering, Banha University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2019

Engineer's Name: Dalia Essam Eldin Khalil

Date of Birth: 20/05/1988

Nationality: Egyptian

Registration Date: 09/10/2012

Awarding Date: --/--/ 2019

Degree: Doctor of Philosophy

Department: Mechanical Power Engineering

Supervisors: Prof. Dr. Samy Mourad Morcos

Prof. Dr. Mohamed Mahmoud Ali Hassan

Prof. Dr. Ahmed A. Fahim

Professor, Housing and Building National

Research Centre

Examiners: Prof. Dr. Samy Mourad Morcos (Thesis Main Advisor)

Prof. Dr. Mohamed Ali Hassan (Advisor)

Prof. Dr. Mahmoud Ahmed Fouad (Internal examiner)
Prof. Dr. Osama Ezzat Abdel-Latif (External examiner)

Professor, Mechanical Power Engineering Department, Shobra

Faculty of Engineering, Banha University

Title of Thesis:

NUMERICAL SIMULATION OF SMOKE MANAGEMENT SYSTEM IN SPRINKLERED CAR PARKS

Key Words:

Numerical simulation; Fire dynamic simulator; sprinklered car parks; sprinklers operating pressure; visibility levels.

Summary:

The following thesis aims to study the effect of sprinklers activation on the fire induced smoke behaviour and the interaction of water particles with the smoke layer by using Fire Dynamic Simulator (FDS 6.5.3). It was found that the sprinkler activation drastically decreased the visibility at occupant's level. The sprinklers water particles when activated dragged the smoke layer downwards due to its momentum. Increasing the ceiling height to 3.5 m in case of impulse ventilation system and 3.2 m in case of ducted system and the sprinkler operating pressure to a minimum of 4bar may help reduce the problem.

DISCLAIMER

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Dalia Essam Eldin Khalil
Signature:
Date:

ACKNOWLEDGMENT

I would like to express my appreciation and thanks to my supervisors **Professor Dr. Sami Mourad, Professor Dr. Mohamed Mahmoud Ali Hassan and Professor Dr. Ahmed Medhat,** you have been tremendous mentors. I would like to thank you for encouraging my research and for all your valuable comments. Your advice on both research as well as on my career was very helpful. Special thanks are due to my father **Prof. Essam E. Khalil** for his patience, co-operation and efforts of helping me to introduce this research in the best way.

The thesis would not have come to a successful completion, without the help I received from my supervisors especially **Adnan Akhdar** and my colleagues at work. They have all extended their support in a very special way, and I gained a lot from them, through their personal and scholarly interactions and their suggestions at various points of my research.

Last but certainly not least, I would like to express my deepest gratitude and special thanks to my family; **my mother, my sister and my husband**. Thank you for supporting me, and for encouraging me throughout this. Words cannot express how grateful I am. I wouldn't be here without you.

TABLE OF CONTENTS

DISCI	LAIMER	I
ACKN	NOWLEDGMENT	II
TABL	E OF CONTENTS	III
LIST	OF FIGURES	VI
LIST	OF ABBREVIATIONS AND SYMBOLS	X
ABST	RACT	XIII
CHAP	TER 1:INTRODUCTION	1
1.1	Sprinklered Car Parks	1
1.2	Underground Car Park Smoke Control	2
1.3	Hazards of Building Fire	3
1.3	3.1 Convected heat	4
1.3	3.2 Radiant heat	4
1.3	3.3 Toxic gases	5
1.3	3.4 Smoke obscuration	5
1.4	Elements of Fire and Smoke Management Systems	6
1.4	4.1 Jet fans	6
1.4	4.2 Sprinkler system	7
1.4	4.3 Detection system	9
CHAP	TER 2:LITERATURE REVIEW	10
2.1	General	10
2.2	Impulse Ventilation System for Smoke Control in Car Parks	10
2.3	Sprinklers Activation Effect	20
2.4	Design Approach	23
2.5	Objectives of the Present Study	
CHAP	TER 3_GOVERNING EQUATIONS	25
3.1	Major Components of the CFD Code	25
3.2	Governing Equations	25
3.3	Visibility	26
3.4	Large Eddy Simulation (LES)	27
СНАР	TER 4:METHODOLOGY, RESULTS AND DISCUSSION	29
4.1	Grid Sensitivity	29
4.2	Assessment and Validation	
4 ′	2.1 Fire source	34

4.	2.2 Smoke temperature measurements	34
4.3	Computational Results for Case Study	37
4.	3.1 Geometry	37
4.	3.2 Boundary conditions & input data	37
4.	3.3 Simulated base cases	42
4.	3.4 Results of base cases	43
4.	3.5 Discussion and conclusion for base cases	72
4.4	Proposed Design Options	73
4.	4.1 Design Option 1: installation of the sprinklers below the smoke layer	74
4.	4.2 Design option 2: increasing sprinklers operating pressure	94
4.	4.3 Design option 3: application of fire decay curve	99
CHAI	PTER 5: CONCLUSIONS AND	121
REC	OMMENDATIONS FOR FUTURE WORK	121
5.1	Final Comments	121
5.2	Conclusions	123
5.3	Recommendations for Future Work	124
REFE	RENCES	125
APPE	NDIX (A):DETAILED GOVERNING EQUATIONS	128
A	.1 Mass and Species Transport	128
A	.2 Momentum Transport	128
A	.3 Energy Transport	129
A	.4 Equation of State	129
A	.5 LES Approach	130
APPE	NDIX (B):SPRINKLERS MODELLING ON PYROSIM	132
В	.1 Introduction	132
В	.2 Droplet Median Diameter Effect	134
В	.3 Droplets Count Effect	141

LIST OF TABLES

Table 2. 1 Simulations carried out by Khalil and Mohamed [15]	17
Table 4. 1: Computational mesh characteristics at different mesh sizes	29
Table 4. 2: Simulation mesh parameters	38
Table 4. 3 Constant Simulations parameters	40
Table 4. 4: Simulated sprinklers parameters	41
Table 4. 5 Simulated base cases	42
Table 4. 6:Air throw and spread at different fan heights and flow rates	75
Table 4. 7 Design option# 2 trials	94
Table 4. 8: Fire growth constant for T-squared fires [28]	102
Table 4. 9: Heat release rate change with time	107

LIST OF FIGURES

Figure 1.1 Suppression system effectiveness [3]	1
Figure 1.2: Building fire hazards [5]	3
Figure 1.3 Tolerance to convected heat [5]	4
Figure 1.4: Tolerance to radiant heat [5]	4
Figure 1.5: Tolerance to HCN and CO [5]	5
Figure 1.6: Walking speed versus visibility [5]	6
Figure 1.7: Sprinklers with different temperature rating	7
Figure 1.8: Typical wet pipe system	8
Figure 1.9: Typical dry system	9
Figure 2.1 Temperature fields results for two different fire source locations [9]	11
Figure 2.2 Visibility distribution at z=2 for a) S1, b) S2, c) S3, d) S4, e) S5 and f) S6	13
Figure 2.3 U-component velocity fields at z=2.8 for a) S1, b) S2, c) S3,	
d) S4, e) S5 and f) S6	13
Figure 2.4 Simulated case studies configuration [12]	13
Figure 2.5: Temperature distribution across car park showing effect	
of different ventilation flow rates	14
Figure 2.6 Effect of different ventilation rates on flame propagation and	
level of visibility [6]	16
Figure 2.7 Visibility contours for the different cases [15]	19
Figure 2.8 Velocity contours for the different cases [15]	19
Figure 2.9 Temperature distribution across car park for the two simulated cases [17]	20
Figure 2.10 Schematic view of the experimental rig	22
Figure 4.1.1:Investigated car park with thermocouple locations	30
Figure 4.1.2: Temperature profile for thermocouple 1	30
Figure 4.1.3: Temperature profile for thermocouple 2	31
Figure 4.1.4: Temperature profile for thermocouple 3	31
Figure 4.1.5: Temperature profile for thermocouple 4	32
Figure 4.1.6: Temperature profile for thermocouple 5	32
Figure 4.2.1: Test facility layout and main dimension [26]	33
Figure 4.2.2: Central section and top plane layout showing test apparatus used	34
Figure 4.2.3 Heat release variation with time for each of the three test cases	34
Figure 4.2.4 FDS geometry used for validation case	35

Figure 4.2.5: Sensor 24 temperature distribution with time comparison	
between [26] and FDS	35
Figure 4.2.6 Sensor 28 temperature distribution with time comparison	
between [26] and FDS	36
Figure 4.2.7 Sensor 60 temperature distribution with time comparison	
between [26] and FDS	36
Figure 4.3.1: Car park used in current work; plan view	37
Figure 4.3.2: Simulated Car park	38
Figure 4.3.3: Relation of t-squared fires to some fire	40
Figure 4.3.4: Visibility contours at 1.8 above FFL without sprinklers modelling	44
Figure 4.3.5: Temperature contours at 1.8 m above FFL without sprinklers modelling	46
Figure 4.3.6: Velocity contours at 1.8 m above FFL without sprinklers modelling	48
Figure 4.3.7: Visibility at vertical section through car fire without sprinklers modelling	49
Figure 4.3.8: Visibility contours at 1.8 m above FFL with sprinklers modelling	51
Figure 4.3.9: Temperature contours at 1.8 m above FFL with sprinklers modelling	53
Figure 4.3.10: Velocity contours at 1.8 m above FFL with sprinklers modelling	55
Figure 4.3.11: Visibility at vertical section through car fire with sprinklers modelling	56
Figure 4.3.12: Visibility contours at 1.8 m above FFL without sprinklers modelling	58
Figure 4.3.13: Temperature contours at 1.8 m above FFL without sprinklers modelling	60
Figure 4.3.14: Velocity contours at 1.8 m above FFL without sprinklers modelling	62
Figure 4.3.15: Visibility contours vertical section across car park without sprinklers	
modelling	63
Figure 4.3.16: Visibility contours at 1.8 m above FFL with sprinklers modelling	65
Figure 4.3.17: Temperature contours at 1.8 m above FFL with sprinklers modelling	67
Figure 4.3.18: Velocity contours at 1.8 m above FFL with sprinklers modelling	69
Figure 4.3.19: Visibility contours vertical section across car park with sprinklers modelling	70
Figure 4.3.20: Smoke propagation upon sprinklers activation across car park	71
Figure 4.4.1 : Side view of 1 m3/s jet fan performance at ceiling level	76
Figure 4.4.2: Top view of 1 m3/s jet fan performance at ceiling level	76
Figure 4.4.3: Side view of 1 m3/s jet fan performance 0.2 m away from ceiling level	77
Figure 4.4.4 : Top view of 1 m3/s jet fan performance 0.2 m away from ceiling level	77
Figure 4.4.5: Side view of 1 m3/s jet fan performance 0.4 m away from ceiling level	78
Figure 4.4.6: Top view of 1 m3/s jet fan performance 0.4 m away from ceiling level	78
Figure 4.4.7: Side view of 2 m3/s jet fan performance at ceiling level	79

Figure 4.4.8: Top view of 2 m3/s jet fan performance at ceiling level	79
Figure 4.4.9: Side view of 2 m3/s jet fan performance 0.2 m away from ceiling level	80
Figure 4.4.10: Top view of 2 m3/s jet fan performance 0.2 m away from ceiling level	80
Figure 4.4.11: Side view of 2 m3/s jet fan performance 0.4 m away from ceiling level	81
Figure 4.4.12: Top view of 2 m3/s jet fan performance 0.4 m away from ceiling level	81
Figure 4.4.13 Visibility distribution in a Vertical Y- plane with no jet fans	83
Figure 4.4.14 Visibility distribution in a Vertical Y- plane at 20 m jet fans longitudinal	
distance	83
Figure 4.4.15 Visibility distribution in a Vertical Y- plane at 30 m jet fans longitudinal	
distance	84
Figure 4.4.16 Visibility distribution in a Vertical Y- plane at 40 m jet fans longitudinal	
distance	84
Figure 4.4.17 Visibility distribution in Z- plane with no jet fans	85
Figure 4.4.18 Visibility distribution in Z- plane at 20 m jet fans longitudinal distance	85
Figure 4.4.19 Visibility distribution in Z- plane at 30 m jet fans longitudinal distance	86
Figure 4.4.20 Visibility distribution in Z- plane at 40 m jet fans longitudinal distance	86
Figure 4.4.21 Temperature distribution in Z- plane with no jet fans	87
Figure 4.4.22 Temperature distribution in Z- plane at 20 m jet fans longitudinal distance	87
Figure 4.4.23 Temperature distribution in Z- plane at 30 m jet fans longitudinal distance	88
Figure 4.4.24 Temperature distribution in Z- plane at 40 m jet fans longitudinal distance	88
Figure 4.4.25 :Layout of sprinklers network with deluge systems	
and smoke detectors highlighted	89
Figure 4.4.26: Visibility contours at 1.8m for different ceiling heights after 300 s	90
Figure 4.4.27 Smoke layer depth with ducted exhaust without sprinkler activation	91
Figure 4.4.28: Visibility contours at 1.8m for different ceiling heights after 300 s	92
Figure 4.4.29: Visibility contours at 1.8m for different sprinklers operating pressure	
after 600 s	95
Figure 4.4.30: Temperature contours at 1.8m for different sprinklers	
operating pressure after 600 s	96
Figure 4.4.31: HRR curves comparison from various car fire experiments	
[29], [30], [31], [32], [33] and [34]	99
Figure 4.4.32:HRR curves for experimental sedan passenger car fire with a) open door	
windows 101 fuel in tank and ignition at right rear b) closed door windows 10.1 fuel	

in tank and ignition at right rear, c) closed door windows, 20L fuel in tank and ignition at	
right rear and d) closed door windows, 10L fuel in tank and ignition at left front seat [35]	100
Figure 4.4.33: Fire development stages [27]	101
Figure 4.4.34: Heat Release temporal variation with sprinklers	103
Figure 4.4.35: Sprinklers distribution within car park	105
Figure 4.4.36 Sequence of sprinkler operation	105
Figure 4.4.37: Heat Release Rate decay due to sprinkler activation	106
Figure 4.4.38: Visibility contours at 1.8 m above FFL	109
Figure 4.4.39: Temperature contours at 1.8 m above FFL	111
Figure 4.4.40: Velocity contours at 1.8 m above FFL	113
Figure 4.4.41: Visibility contours at 1.8 m above FFL	115
Figure 4.4.42: Temperature contours at 1.8 m above FFL	117
Figure 4.4.43: Velocity contours at 1.8 m above FFL	119

LIST OF ABBREVIATIONS AND SYMBOLS

Abbreviation Description

ACH Air changes per hour

AHJ Authority Having Jurisdictions

American Society of Heating, Refrigeration, and

Air-Conditioning Engineers

CFD Computational fluid dynamics

CPU Central processing unit

DNS Direct Numerical Simulation

EXP Experimental

FDS Fire Dynamic Simulator

FFL Finished Floor Level

Gpm Gallons per minute

HRR Heat Release Rate

HVAC Heating ventilation and air conditioning

IVS Impulse Ventilation System

LES Large Eddy Simulation

NFPA National fire protection agency

SIM Simulation

Symbol	Description
A	Surface area
$\overrightarrow{A_{l}}$	Area vector of a cell face
Е	Energy
f_b	Body force
ω	spray density
K	light extinction coefficient
T	Temperature
P	Pressure
С	Non-dimensional constant characteristic for every type of object being viewed through the smoke
k	Turbulent kinetic energy
k_c	Thermal conductivity
\mathbf{k}_{t}	Turbulent thermal conductivity
k_{eff}	Effective thermal conductivity
m°	Mass flow rate
M_t	Turbulent Mach number
N	Newtons
Pr	Molecular Prandtl number
R	Universal gas constant
S_{ϕ}	Source term for the scalar quantity ϕ
S_{ij}	Symmetric rate-of-strain tensor
t	time
U	Time averaged (mean) velocity
u_i	Instantaneous velocity component in the i th direction, m/sec
u′	fluctuating velocity component
V	Volume
W	Molecular weight of the gas mixture