ANALYTICAL EVALUATION STUDY OF THE BEHAVIOUR OF STRUCTURES SUBJECTED TO BLAST LOADS

By

AHMED ABDEL BARI MAHDI EMARAH

A Thesis Submitted to The Faculty of Engineering, Cairo University In Partial Fulfillment of the Requirement for the Degree of

DOCTORATE OF PHILOSOPHY In STRUCTURAL ENGINEERING

ANALYTICAL EVALUATION STUDY OF THE BEHAVIOUR OF STRUCTURES SUBJECTED TO BLAST LOADS

By

AHMED ABDEL BARI MAHDI EMARAH

A Thesis Submitted to
The Faculty of Engineering, Cairo University
In Partial Fulfillment of the Requirement for the Degree of

DOCTORATE OF PHILOSOPHY In STRUCTURAL ENGINEERING

Under the Supervision of

Prof. Abdelhamid Ibrahim Zaghw

Professor of Concrete Structures
Structural Engineering Department
Faculty of Engineering
Cairo University

Ass. Prof. Kamal Ghamry Metwally

Ass. Professor of Structures
Civil Engineering Department
Faculty of Engineering
Beni-Suef University

ANALYTICAL EVALUATION STUDY OF THE BEHAVIOUR OF STRUCTURES SUBJECTED TO BLAST LOADS

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

By

AHMED ABDEL BARI MAHDI EMARAH

A Thesis Submitted to
The Faculty of Engineering, Cairo University
In Partial Fulfillment of the Requirement for the Degree of

In STRUCTURAL ENGINEERING

Approved by the Examining Committee:

Abdelhamid Ibrahim Zaghw Professor of Concrete Structures, Faculty of Engineering, Cairo University Kamal Ghamry Metwally Associate Professor of Civil Engineering, Faculty of Engineering, Beni-Suef University Hamed Mohamed Hadhoud Professor of Concrete Structures, Faculty of Engineering, Cairo University Member

Ehab Ahmed Badr-El-din Khalil

Professor of Structures, Construction Research Institute, Ministry of Water Resources and Irrigation

Member

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 Engineer: Ahmed Abdel bari Mahdi Emarah

Date of Birth: 4/7/1984 Nationality: Egyptian

Registration Date: 01/03/2013

Awarding Date: / /

Degree: Doctorate of Philosophy Department: Structural Engineering

Supervisors: Prof. Dr. Abdelhamid Ibrahim Zaghw

Ass.Prof. Dr. Kamal Ghamry Metwally

Examiners: Prof. Dr. Abdelhamid Ibrahim Zaghw

Ass.Prof. Dr. Kamal Ghamry Metwally Prof. Dr. Hamed Mohamed Hadhoud Prof. Dr. Ehab Ahmed Badr-Eldin Khalil

Title of Thesis:

ANALYTICAL EVALUATION STUDY OF THE BEHAVIOUR OF STRUCTURES SUBJECTED TO BLAST LOADS

Key Words: Blast, LSDYNA, control displacement, UFC and Arching Walls.

Summary:

This study used the LSDYNA computer program to investigate the behavior of the structures against blast loads. It analyzed the displacements and the consequent stages of damage or failure under blast loads. Three different structures were studied. The study showed that the use of the arching masonry walls as a structural system is easy and cheap and can be applied to both existing and new structures to reduce the flying debris, which is the main source of property damage, human injuries and loss of lives. Results of this study can be used in the design and evaluation of safety of structures.

ACKNOWLEDGEMENTS

The author would like to express his sincere appreciation and gratitude to *Abdelhamid I. Zaghw*, Professor of Concrete Structures, Cairo University, Kamal *G. Metwally*, Associate Professor of Structures, Civil Engineering Department, Beni-Suef University, *Hamed M. Hadhoud*, Professor of Concrete Structures, Cairo University, and *Ehab A. B. Khalil*, Professor of Structures, Constuction Research Institute, Ministry of Water Resources and Irrigation for their supervision, suggestions, valuable advice, continuous encouragement and guidance throughout this thesis.

Most importantly, none of this would have been possible without the love and patience of my family. I feel a deep sincere of gratitude to My Parents, who always show persisting love and support to my ideas and decisions.

ABSTRACT

Structures may experience catastrophic damages due to sudden large dynamic loads such as petro-chemical explosions, aircraft crashes, terrorist attacks by explosives. Since most of structures have not been designed to be subjected to this kind of extreme destructive loads, failure consequences can be expected. Attention brought to develop new methods to improve the structure response capacity against these dynamic loads. Since blast field tests are dangerous, expensive, and always have limitation on scale of explosions, the development of numerical models that could accurately describe the structure response behavior under such loads is of urgent need.

In this study, evaluation on three types of structures against blast load performed using LSDYNA software program. The selected structures previously designed to withstand blast loads using different software program: WAI-MAZ, for hardened aircraft shelter, UFC design manuals, for reinforced concrete wall, and experimental tests, for unreinforced masonry wall. Close agreement observed between the results that validate all the models. A sensitivity study then performed to adapt the out of plane dynamic resistance of the unreinforced masonry walls implementing arching action as a cost-effective technique. Unreinforced masonry walls have low out-of-plane flexural strength. Flying debris considered the most dangerous to building occupants from blast loads and considered the major source of individual injuries and loss of lives. The results of this study can be used for the design and safety evaluation of structures.

TABLE OF CONTENTS

ACF	KNOV	VLEDGI	EMENTS	i
ABS	TRA	CT		ii
TABLE OF CONTENTS			iii	
LIST	LIST OF FIGURES v			vii
LIST	г оғ	TABLES	8	ix
Cha	pter 1	INTRO	DUCTION	
	1.1	Overvie	•W	1
	1.2	Motivat	ion	2
	1.3	Objectiv	ves	3
	1.4	Scope		3
	1.5	Thesis (Organization	4
Cha	pter 2	LITER	ATURE REVIEW	
	2.1	Dynami	ic lateral load	5
	2.1	.1 The	explosion loads	5
		2.1.1.1	The explosion loads	5
		2.1.1.2	The explosion properties	6
		2.1.1.3	The properties of blast waves	6
		2.1.1.4	The scaling law of blast waves	9
		2.1.1.5	The reflected overpressure and The wave reflection	11
		2.1.1.6	The behaviour of structures related to blast loading	12
		2.1.1.7	Pressure Index (P.I) diagrams	15
	2.2	Masonr	y structures	16
	2.2	2.1 Intro	duction	16
	2.2	2.2 Cons	truction	16
	2.2	2.3 Unre	inforced masonry with arching action	16

2.2.4	The Behaviour of the un-reinforced masonry structures under lateral loads	7
2.2.5	Finite element analyses of un-reinforced masonry wall under lateral pressure	8
2.3 W	AI-MAZ program preparation for Hardened Air-craft Shelter	10
2.4 Re	inforced concrete wall under extreme lateral loads	12
Chapter 3 N	METHODOLOGY	
3.1 I	ntroduction4	3
3.2	The first Model: (UMW) Unreinforced Masonry Wall4	4
3.2.1	Unit System4	4
3.2.2	Dimensions and Geometry4	4
3.2.3	Modeling and Meshing4	4
3.2.4	Material model for (CMU) Concrete Masonry Unit4	5
3.2.5	Material model for Support Rigid Boundaries4	7
3.2.6	Hourglass Control5	0
3.2.7	Contact Interfaces Cards5	0
3.2.8	Contact Friction Formation5	1
3.2.9	Boundary Condition Definition	2
3.2.1	0 Loads5	4
3	3.2.10.1 Gravity Loads5	4
3	3.2.10.2 Blast Loads	4
3.3	The Second Model: (HAS) - Hardened Aircraft Shelter5	8
3.3.1	Dimensions and Geometry5	8
3.3.2	Modeling and Meshing5	8
3.3.3	Material6	0
3.3.4	Hourglass Control6	4
3.3.5	Contact Interfaces Cards	4
3.3.6	Boundary Condition Definition6	4
3.3.7	Loads6	5
3	3.3.7.1 Gravity Loads6	5

		3.3	3.7.2 Blast Loads	65
	3.4	LS	-DYNA Numerical Results for (RCW) - Reinforced Concrete Wall Subjected to Blast Load	
	3.4	l .1	Units, Dimensions and Geometry	68
	3.4	1.2	Modeling and Meshing	68
	3.4	1.4	Material Models Definition	68
	3.4	1.5	Hourglass Control Definition	71
	3.4	1.6	Boundary Condition Definition	71
	3.4	1.7	Blast load Definition	71
Cha	pter 4	l VE	CRIFICATION	
	4.1	Int	roduction	73
	4.2	Ur	reinforced Masonry Wall	74
	4.2	2.1	Experimental Test Results for Masonry Wall	74
	4.2	2.2	Numerical Results for Masonry Wall	75
	4.2	2.3	Comparison between Numerical and Experimental Results	77
	4.3	На	rdened Aircraft Shelter	78
	4.3	3.1	WAI-MAZ Numerical Results for Hardened Aircraft Shelter	78
	4.3	3.2	LS-DYNA Numerical Results for Hardened Aircraft Shelter	83
	4.3	3.3	Comparison between the two numerical models results	85
	4.4	LS	-DYNA Numerical Results for Reinforced Concrete Wall Subjected Blast Load.	
Cha	pter 5	5 PA	RAMETRIC STUDY	
	5.1	Int	roduction	87
	5.2	Int	luence of Mortar Strength	87
	5.2	2.1	Mortar's Bond Strength	87
	5.2	2.2	Mortar's Friction Strength	91
	5.3	In	fluence of the Arching Ledge's Length	92
	5.4	Int	luence of the two way arching action	96

Chap	ter 6	S SUMMARY, DISCUSSION AND CONCLUSION	
	6.1	Recommendations for Future's Work	99
REFI	ERE	NCES	100
APPE	E ND	IX (A)	

LIST OF FIGURES

Figure		Page
2.1	Ideal blast wave pressure-time profile (Baker, 1973)	6
2.2	Side-on blast wave parameters for spherical charges of TNT	
	(Mays and Smith, 1995)	8
2.3	Hopkinson Blast Wave Scaling (Strehlow and Baker, 1976)	9
2.4	Side-on and reflected blast wave parameters for spherical	
	charges of TNT (UFC, 2008)	11
2.5	Impulsive loading (Tolba, 2001)	13
2.6	Quasi-static loading (Tolba, 2001)	13
2.7	Dynamic loading (Tolba, 2001)	13
2.8	The Impact of Positive and Negative Blast Pressure on	
	buildings	14
2.9	Reflection of Ground Surface Explosion, Johansson, 2002	14
2.10	Typical pressure-impulse diagram (Shi et al., 2008)	15
2.11	Arching mechanism (Moradi et al., 2008)	16
2.12	Types of Bond in Masonry	19
2.13	Typical Sliding Shear Failure	20
2.14	Typical Shear Failure	20
2.15	Typical Bending Failure	21
2.16	Tensile Cracking of Masonry	21
2.17	Different Failure Modes of Masonry	22
2.18	Tensile Behaviour of Masonry Element	23
2.19	Constitutive Model for Tensile Stress State	23
2.20	Two Masonry Panels with Different Diagonal Tension	
	Behaviour	24
2.21	Block Prisms for the Shear Tests with and without Lateral by	
	(Martins, 2001)	24

2.22	Failure of Wall under Pressure	25
2.23	Softening Role in Crack Surface	25
2.24	Adopted Method for Global Behaviour of Masonry Walls	26
2.25	Moment-Curvature Relation for the Masonry Walls	27
2.26	Moment-Curvature Distribution along the Masonry Walls	27
2.27	Masonry Walls under Shear Stresses	28
2.28	Types of Models for Masonry	34
2.29	Modelling using Contact Element for Joints	34
2.30	Alternatives for the discretization of the Model	35
2.31	Modelling Levels	35
2.32	Micro-Modelling of Brick Prism for Compression,	
	(Selvakumar et al., 2014)	36
2.33	Micro-Modelling of Brick Prism for Shear, (Selvakumar et al.,	
	2014)	36
2.34	Macro-Modelling of Brick Prism for Compression,	
	(Selvakumar et al., 2014)	37
2.35	Distribution of Stress in Masonry Prism by Micro-Modelling,	
	(Selvakumar et al., 2014)	37
2.36	Distribution of Stress in Masonry Prism by Macro-Modelling,	
	(Selvakumar et al., 2014)	38
2.37	Comparison of Stress-Strain obtained from numerical	
	simulation for Masonry Walls, (Selvakumar et al., 2014)	38
2.38	Comparison of Bond-Stress obtained from numerical	
	simulation for Masonry Walls, (Selvakumar et al., 2014)	39
3.1	Concrete masonry unit mesh	45
3.2	Concrete Masonry Section Definition-UMW	46
3.3	Steel Section Definition-UMW	47
3.4	Isometric View for the Finite element model of masonry wall	48
3.5	Elastic Material Definition for Concrete-UMW	49

3.6	Rigid Material Definition for Steel Plates-UMW	49
3.7	Hourglass Definition-UMW	50
3.8	Contact Interface Definition-UMW	52
3.9	Boundary Assignment Definition-UMW	53
3.10	Gravity Load Definition Curve-UMW	54
3.11	Blast Load Definition Curve-UMW	56
3.12	Blast Load Enhanced Definition-UMW	57
3.13	Isometric View for the Finite element model of HAS	58
3.14	Concrete Section Definition-HAS	59
3.15	Soil Fill Section Definition-HAS	59
3.16	Burster Slab Section Definition-HAS	60
3.17	Tensile Behaviour of CONCRETE_EC2 Material Model	61
3.18	Stress Strain Curve for CONCRETE_EC2 Material Model	61
3.19	Stress Strain Curve for steel in Eurocode-2	62
3.20	Rigid Material Definition for R.C Arch-HAS	62
3.21	Soil Material Definition -HAS	63
3.22	CONCRETE_EC2 Material Definition -HAS	63
3.23	Contact Surface Definition-HAS	64
3.24	Boundary Assignments-HAS	65
3.25	Blast Load Enhanced Definition-HAS	67
3.26	Geometry and Load Configuration of RCW	68
3.27	Finite Element Model of RCW	69
3.28	Concrete_EC2 Material Definition-RCW	69
3.29	Shell Section Definition-RCW	70
3.30	Material Definition for RCW	70
3.31	Boundary Assignments-RCW	71
3.32	Blast Load Curve Definition-RCW	72
4.1	Experimental Mid-Point Displacement Time History	75
4.2	Numerical Mid-Point Displacement Time History	76

4.3	Shelter Finite Element Model by WAI-MAZ	81
4.4	Numerical Mid-Point Displacement Time History by WAI-	
	MAZ	81
4.5	Peak vertical displacement during analysis – 3D	82
4.6	Peak vertical displacement contours during analysis- Elevation	82
4.7	Peak vertical displacement time history of Shelter	83
4.8	Peak vertical displacement time history of Shelter	84
4.9	Wall displacement	85
5.1	Mid-Point Displacement Time History – Default Case	88
5.2	Numerical Mid-Point Displacement Time History- Case 1	89
5.3	Numerical Mid-Point Displacement Time History – Case 2	89
5.4	Numerical Mid-Point Displacement Time History – Case 3	90
5.5	Numerical Mid-Point Displacement Time History – Case 4	90
5.6	Numerical Mid-Point Displacement Time History – Case 1	92
5.7	Numerical Mid-Point Displacement Time History – Case 2	92
5.8	Numerical Mid-Point Displacement Time History – 100 mm	
	Arching Ledge	93
5.9	Numerical 3D View for 100 mm Arching Ledge	94
5.10	Numerical Peak Displacement Shape for 100 mm Arching	
	Ledge	95
5.11	Numerical Mid-Point Displacement Time History for Two	
	Way Arching Wall	96
5.12	Numerical 3D View for the Two Way Arching Wall	
	Displacement	97

LIST OF TABLES

Table	e	Page
3.1	Material properties of CMUs	46
3.2	Material properties of rigid plates-UMW	47
3.3	Blast load parameters - UMW	56
3.4	Blast load parameters-HAS	66
4.1	Parameters Assigned to the Default Model-UMW	76
5.1	Bond Parameter Cases of Study	88
5.2	Friction Parameters Cases of study	91