THE USE OF TRANSGLUTAMINASE IN THE MANUFACTURE OF SOME DAIRY PRODUCTS SUBSTITUTED BY SOYBEAN PROTEINS

By

NEAMA SAID ALI MOHAMED FARRAG

B.Sc. Agric. Sc. (Dairy Technology), Ain Shams University, 2005M.Sc. (Dairy Technology), Ain Shams University, 2011

A Thesis Submitted in Partial Fulfillment
Of
the Requirements for the Degree of

DOCTOR OF PHYLOSOFY
in
Agricultural Sciences
(Dairy Science and Technology)

Department of Food Science Faculty of Agriculture Ain Shams University

Approval Sheet THE USE OF TRANSGLUTAMINASE IN THE MANUFACTURE OF SOME DAIRY PRODUCTS SUBSTITUTED

BY SOYBEAN PROTEINS

By

NEAMA SAID ALI MOHAMED FARRAG

B.Sc. Agric. Sc. (Dairy Technology), Ain Shams University, 2005M.Sc. Agric. Sc (Dairy Technology), Ain Shams University, 2011

This thesis for Ph.D. degree has been approved by: Dr. Eissa Abd-Elghaffar Hassan Emara Prof. Emeritus of Dairy Science and Technology, Animal Production Research Institute, Agriculture Research Center. Dr. Yossef Moursy Elkenany Prof. Emeritus of Dairy Science and Technology, Faculty of Agriculture, Ain Shams University Dr. Hamdy Farag Haggag Prof. Emeritus of Dairy Science and Technology, Faculty of Agriculture, Ain Shams University

Date of Examination: 26/12/2018

THE USE OF TRANSGLUTAMINASE IN THE MANUFACTURE OF SOME DAIRY PRODUCTS SUBSTITUTED BY SOYBEAN PROTEINS

By

NEAMA SAID ALI MOHAMED FARRAG

B.Sc. Agric. Sc. (Dairy Technology), Ain Shams University, 2005M.Sc. Agric. Sc (Dairy Technology), Ain Shams University, 2011

Under the supervision of:

Dr. Hamdy Farag Haggag

Prof. Emeritus of Dairy Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Samah Mohamed Shalaby

Associate Prof. of Dairy Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University

ABSTRACT

Neama Said Ali Mohamed Farrag: The use of transglutaminase in the manufacture of some dairy products substituted by soybean proteins. Unpublished Ph.D. Thesis, Department of Food Science, Faculty of Agriculture, Ain Shams University, 2019.

Food consists of several components of a complex structure and different shapes to suit different tastes of consumers. A protein is considered the most important component of milk, in addition to its role in nutrition, it is a food component which works to improve the functional properties of the structure, stability and handling of dairy products.

Because of the higher milk protein price compared to other plant proteins, the study suggested that a portion of bovine milk protein could be replaced by a protein from a plant source. Previous studies show that soybean proteins are the most suitable type of proteins that can be used in the food industry in general and dairy industries in particular because of its good functional characteristics in addition to its nutritional and technological characteristics. Thus, the study focused on the use of soybean milk as a source of plant protein. Despite all the benefits of soy milk, the main problem is the appearance of some defects when used with some dairy products, especially yoghurt or soft cheese, especially when using whole-fat soy milk such as the appearance of off-flavour compounds which necessitated the need to modify the composition of both cow's or soy milk.

One of the best method of modification used is enzymes due to its high specialized role and no toxic substance residues in food. The most important enzyme used is the transglutaminase EC(2.3.2.13). The objective of this study was the production of some dairy products fortified by soy proteins and treated with transglutaminase. In addition, reduce or overcome some of the disadvantages in the traditional dairy products manufactured using fortified soy proteins that have already been studied.

This study was conducted in two parts. The summary of the results obtained are:

Part I: Manufacture of yoghurt

In this part transglutaminase was used by 0.5, 1 and 1.5 u / g protein in cow's milk, soy milk or mixture of both. The characteristics of resulted yoghurt affected by ratio of transglutaminase used and soy milk. Generally, the sensory evaluation of yoghurt made from 100% soy milk and 0.5 u of TGase was preferred compared with untreated soy milk yoghurt. Also, by increasing cow's milk in mixture or dose of TGase the colour, texture profile analysis and scanning electron microscope enhanced. By increasing soy milk in mixture used for yoghurt production and decreasing TGase dose didn't enhance the flavour or overall acceptability of yoghurt samples but was better than the mixture of 2:1 cow milk and soy milk in synersis.

In the case of the use of transglutaminase and soybean milk in the manufacture of yoghurt, one unit of enzyme should be used.

Part II: Cheese manufacture

In this part soft cheese was manufactured by cow's milk: soy milk 1:1, 1:2 or 2:1 and TGase dose 1, 5 and 10 u/g protein. The results obtained showed that in case of the use of transglutaminase and soybean milk in the manufacture of soft cheese, lower doses of the enzyme should be used. It means that 1 or 5 units of enzyme enhance the colour, volatile profile compounds, texture profile, scanning electron microscope, and sensory evaluation of soft cheese made from soy milk or mixture of soy milk and cow's milk.

Key Words: Transglutaminase, Cow's milk, Soybean milk.

ACKNOWLEDGEMENT

I wish to extend my deepest appreciation and sincere gratitude to **Prof. Dr. Hamdy Farag Haggag,** Professor of Dairy Science and Technology, Food Science Department, Faculty of Agriculture, Ain Shams University, for the kind attention and greater help provided for the accomplishment of this work and for his efforts, supervising the research, writing the manuscript and encouraging me through this course. It is difficult to express in words my deep respect to him. He learnt me many things which I never have had the opportunity to learn.

I wish to find the word to express my gratefulness thanks to **Dr. Samah Mohamed Shalaby**, Associate Professor of Dairy Chemistry and Technology, Food Science Department, Faculty of Agriculture, Ain Shams University, for her true efforts to complete this work and plentiful advices for me to complete this work.

Thanks are also extended for the institute of food technology, Anhalt University of Applied Sciences, Germany (**Prof. Dr. Thomas Heinschmidt**) for providing the transglutaminase enzyme.

I would like to thank all the stuff members of Food Science and Technology Department at Ain Shams University. Thanks also to everyone who provided help or advised me to achieve this manuscript.

CONTENTS

	Page
LIST OF TABLES	IV
LIST OF FIGURES	VI
LIST OF DIAGRAMS	XI
LIST OF APPREVIATIVES	XII
1- INTRODUCTION	1
2- REVIEW OF LITERATURE	3
2-1 Transglutaminase and Dairy Foods application	3
2-2 Yoghurt and transglutaminase	17
2-3 Cheese and transglutaminase	22
2-4 Soy milk	23
2-5 Soy milk preparation	23
2-6 Soy milk and yoghurt	27
2-7 Soy milk and cheese	28
2-8 Flavours components of soybean protein products	29
3- MATERIALS AND METHODS	32
3.1. Materials	32
3.2. Methods	32
3-2-1 Soy milk preparation	32
3-2-2 Yoghurt Manufacture	33
3-2-3 Preparation of acidulant for Soy cheese	34
3-2-4 Cheese manufacture	34
3-2-5 Yoghurt analysis	35
3-2-5-1 pH value	35
3-2-5-2 Titratable acidity	35
3-2-5-3 Water holding capacity (WHC)	35
3-2-5-4 Susceptibility to synersis	36
3-2-5-5 Sensory evaluation	36

	Page
3-2-5-6 Texture profile analysis of yoghurt	36
3-2-5-7 Hardness	37
3-2-5-8 Rheological properties	37
3-2-5-8-1 Viscosity of yoghurt	37
3-2-5-8-2 Apparent viscosity	38
3-2-5-9 Colour measurements	38
3-2-5-10 Scanning electron microscope	39
3-2-5-11 Volatile compounds	39
3-2-5-12 Statistical analysis	41
3-2-6 Cheese analysis	41
3-2-6-1 Cheese yield calculations	41
3-2-6-2 Sensory evaluation	41
3-2-6-3 Texture profile analysis of cheese	41
3-2-6-4 Hardness	41
3-2-6-5 Colour	41
3-2-6-6 Scanning electron microscopy	42
3-2-6-7 Volatile compounds	42
4- RESULTS AND DISCUSSIONS	43
Part I	
The effect of TGase on the manufacture of set-type	
yoghurt made from cow's milk substituted with soybean	
milk	43
4-1-1 pH	43
4-1-2 Acidity	43
4-1-3 The ability to hold water (WHC)	46
4-1-4 Syneresis	47
4-1-5 Sensory evaluation	49
4-1-6 Textural measurement	53

	Page
4-1-7 Strength and hardness of the curd	53
4-1-8 Rheological properties	55
4-1-9 Colour data for yoghurt	94
4-1-10 Microstructure of yoghurt sample	97
4-1-11 Profile of volatile compounds in yoghurt produced by	
cow's milk fortified with soy milk	102
Part II: The effect of TGase on the manufacture of soft	
cheese made from cow's milk substituted by soybean milk	125
4-2-1 Yield	125
4-2-2 Sensory evaluation of cheese samples	127
4-2-3 Scanning electron microscopy	132
4-2-4 Penetration	139
4-2-5 Texture profile analysis	140
4-2-6 Cheese volatile compound	
•	143
5- SUMMARY	166
6- REFERANCES	160

LIST OF TABLES

Π.	1	. 1	
) I	7	
			ıt

No.		Page
1	Changes of pH values of yoghurt samples with soymilk	
	and TGase during 14 days of storage at 5 °C	44
2	Changes of acidity values of yoghurt samples with	
	soymilk and TGase during 14 days of storage at 5 °C	45
3	Water holding capacity (%) of yoghurt Treatments with	
	soymilk and TGase during 14 days of storage at 5 °C	46
4	Syneresis (%) of yoghurt samples with soymilk and	
	TGase during 14 days of storage at 5 °C	48
5	Sensory evaluation of yoghurt Treatments with soymilk	
	and TGase during 2 weeks of storage at 5 °C	52
6	Texture profile analysis for fresh yoghurt treatments	55
7	Penetration depth (mm/10s) of yoghurt samples with	
	soymilk and TGase during 14 days of storage at 5 °C	57
8	The effect of soy milk substitution and	
	transglutaminase on colour value of yoghurt	
	Treatments	96
9	Volatile compounds of yoghurt made of 100% cow	
	milk	105
10	Volatile compounds of yoghurt made of 100% cow	
	milk + 0.5 u of TGase	107
11	Volatile compounds of yoghurt made of 100% soy	
	milk	109
12	Volatile compounds of yoghurt made of 100% soy milk	
	+ 0.5 u of TGase	111
13	Volatile compounds of yoghurt made from mixture of cow milk and soy milk 1:1 and 1 u of TGase	118
14	Volatile compounds of yoghurt made from mixture of	
	cow milk and soy milk 1:1 and 1.5 u of TGase	120
15	Volatile compounds of yoghurt made from mixture of cow milk and soy milk 1:2 and 1 u of TGase	122

Table

No.		Page
16	Volatile compounds of yoghurt made from mixture of	
	cow milk and soy milk 1:2 and 1.5 u of TGase	124
17	Yield of cheese processed with different acidulants and	
	different doses of TGase	127
18	Sensory evaluation of fresh cheese treatments	
	acidulated with lemon juice or vinegar and treated by	
	TGase	129
19	Sensory evaluation of cheese Treatments coagulated	
	with lemon juice and treated by TGase during 2 weeks	
	of storage at 5 °C	131
20	The effect of soy milk substitution and	
	transglutaminase on colour values of cheese Treatments	138
21	Penetration depth (mm/30s) of yoghurt Treatments with	
	soymilk and TGase during 14 days of storage at 5 °C	140
22	Texture profile analysis for cheese treatments	142
23	Volatile compounds of cheese made of 100% cow milk	146
24	Volatile compounds of cheese made of 100% cow milk	
	+ 1u of TGase	148
25	Volatile compounds of cheese made of 100% soy milk.	151
26	Volatile compounds of cheese made of 100% soy milk	
	+ 1 u of TGase	153
27	Volatile compounds of cheese made from mixture of	
	cow milk and soy milk 1:1 and 5 u of TGase	155
28	Volatile compounds of cheese from mixture of cow	
	milk and soy milk 1:1 and 10 u of TGase	157
29	Volatile compounds of cheese made from mixture of	
	cow milk and soy milk 1:2 and 5 u of TGase	159
30	Volatile compounds of cheese made from mixture of	
	cow milk and soy milk 1:2 and 10 u of TGase	161

Table

No.		Page
31	Volatile compounds of cheese made from mixture of	
	cow milk and soy milk 2:1 and 5 u of TGase	163
32	Volatile compounds of cheese made from mixture of	
	cow milk and soy milk 2:1 and 10 u of TGase	165

LIST OF FIGURES

Fig. No.		Page
1	Rheological behavior for fresh 100% cow's milk	
	yoghurt	59
2	Rheological behavior for fresh 100% cow's + 0.5u	
	TGase milk yoghurt	60
3	Rheological behavior for fresh 100% soymilk	
	yoghurt	61
4	Rheological behavior for fresh 100% soy milk $+$ 0.5 u	
	TGase yoghurt	62
5	Rheological behavior for fresh Cow milk: Soy milk 1	
	: 1 + 1 u yoghurt	63
6	Rheological behavior for fresh Cow milk: Soy milk 1:	
	1 + 1.5 u TGase yoghurt	64
7	Rheological behavior for fresh Cow milk: Soy milk 1:	
	2 + 1 u TGase yoghurt	65
8	Rheological behavior for fresh Cow milk: Soy milk 1: 2 + 1.5 u TGase yoghurt	66
9	Rheological behavior for fresh Cow milk: Soy milk 2:	
	1 + 1 u TGase yoghurt	67
10	Rheological behavior for fresh Cow milk: Soy milk 2:	
	1 + 1.5 u TGase yoghurt	68
11	Rheological behavior for 100% cow milk yoghurt	
	after 1 week of storage	69
12	Rheological behavior for 100% cow milk + 0.5 u	
	TGase yoghurt after 1 week of storage	70
13	Rheological behavior for 100% soy milk yoghurt	
	after 1 week of storage	71
14	Rheological behavior for 100% soy milk + 0.5 u	
	TGase yoghurt after 1 week of storage	72

Fig. No.		Page
15	Rheological behavior for Cow milk: Soy milk 1: 1 +	
	1 u TGase yoghurt after 1 week of storage	73
16	Rheological behavior for Cow milk: Soy milk 1: 1 +	
	1.5 u TGase yoghurt after 1 week of storage	74
17	Rheological behavior for Cow milk: Soy milk 1: $2 +$	
	1 u TGase yoghurt after 1 week of storage	75
18	Rheological behavior for Cow milk: Soy milk 1: $2 +$	
	1.5 u TGase yoghurt after 1 week of storage	76
19	Rheological behavior for Cow milk: Soy milk 2: $1 +$	
	1 u TGase yoghurt after 1 week of storage	77
20	Rheological behavior for Cow milk: Soy milk 2: $1 +$	
	1.5 u yoghurt after 1 week of storage	78
21	Rheological behavior for 100% cow milk yoghurt	
	after 2 weeks of storage	79
22	Rheological behavior for 100% cow milk + 0.5 u	
	TGase yoghurt after 2 weeks of storage	80
23	Rheological behavior for 100% soy milk yoghurt	
	after 2 weeks of storage	81
24	Rheological behavior for 100% soy milk + 0.5 u	
	TGase yoghurt after 2 weeks of storage	82
25	Rheological behavior for Cow milk: Soy milk 1: 1 +	
	1 u TGase yoghurt after 2 weeks of storage	83
26	Rheological behavior for Cow milk: Soy milk 1: 1 +	
	1.5 u TGase yoghurt after 2 weeks of storage	84
27	Rheological behavior for Cow milk: Soy milk 1: 2 +	
	1 u TGase yoghurt after 2 weeks of storage	85
28	Rheological behavior for Cow milk: Soy milk 1: 2 +	
	1.5 u TGase yoghurt after 2 weeks of storage	86
29	Rheological behavior for Cow milk: Soy milk 2: $1 +$	
	1 u TGase yoghurt after 2 weeks of storage	87

Fig. No.		Page
30	Rheological behavior for Cow milk: Soy milk 2: 1 +	
	1.5 u yoghurt after 2 weeks of storage	88
31	Scanning Electron microscopy for yoghurt	
	Treatments: 100% cow's milk, 100% cow milk + 0.5	
	u TGase, 100% soy milk and 100% soy milk + 0.5 u	
	TGase	98
32	Scanning Electron microscopy for yoghurt samples	
	made from mixture of cow milk: soy milk 1:1 and	
	treated by 1u and 1.5 u of TGase	99
33	Scanning Electron microscopy for yoghurt samples	
	made from mixture of cow milk: soy milk 1:2 and	
	treated by 1u and 1.5 u of TGase	100
34	Scanning Electron microscopy for yoghurt samples	
	made from mixture of cow milk: soy milk 2:1 and	
	treated by 1u and 1.5 u of TGase	101
35	Typical gas chromatogram of yoghurt made of 100%	
	cow milk	104
36	Typical gas chromatogram of yoghurt made of 100%	
	cow milk + 0.5 u of TGase	106
37	Typical gas chromatogram of yoghurt made of 100%	
	soy milk	108
38	Typical gas chromatogram of yoghurt made of 100%	
	soy milk + 0.5 u of TGase	110
39	Typical gas chromatogram of yoghurt made from	
	mixture of cow milk and soy milk 1:1 and 1 u of	
	TGase	117
40	Typical gas chromatogram of yoghurt made from	
	mixture of cow milk and soy milk 1:1 and 1.5 u of	110
	TGase	119