سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

EVALUATION OF CYTOTOXICITY, SEALING ABILITY AND CLINICAL ASSESSMENT OF FOUR DIFFERENT ROOT END FILLING MATERIALS

Thesis Submitted in Partial Fulfillment of the Requirements for the

Doctor Degree

CONSERVATIVE DENTISTRY

By
Ashraf Mamdouh Zaazou

(B.D.S, M.Sc., Alexandria University)

Faculty of Dentistry
Alexandria University
2002

ICVAM

Supervisors

Prof. Dr. Mohamed Ibrahim

Professor of Conservative Dentistry
Conservative Dentistry Department
Faculty of Dentistry
Alexandria University

Dr. Amr Abdalla

Assistant Professor of Conservative Dentistry

Conservative Dentistry Department

Faculty of Dentistry

Alexandria University

Prof. Dr. Mohamed Samy Afifi

Professor of Immuology
Department of Immunology
Medical Research Institute
Alexandria University

Prof. Dr. Samia Abdel-Gawad

Professor of Physical Medicine
Department of Radiology
Faculty of Medicine
Alexandria University

Dedicated To
My Parents,
My Supportive Wife
And
To the Sunshine of My Eyes
Youssef and Karima

ACKNOWLEDGEMENT

I wish to express my deepest gratitude to **Prof. Dr. Mohamed Ibrahim**, Professor of Conservative Dentistry, Faculty of Dentistry, Alexandria
University, for his kind supervision, continuous assistance, encouragement,
and guidance, as well as his moral and fatherly support throughout the period
of study.

I am very grateful to **Dr.** Amr Abdalla, Associate Professor of Conservative Dentistry, Faculty of Dentistry, Alexandria University, for his unlimited helpful assistance, valuable and advisable instructions, and strong support as well as being an older brother.

I would also like to express my sincere thanks to **Prof. Dr.**Mohamed Samy Afifi, Professor of Immunology, Medical Research Institute, Alexandria University, for his patience, guidance and his helpful assistance in the cytotoxicity assay in the present study.

Credit must also go to Prof. Dr. Samia Abdel-Gawad Rizk, Professor of Physical Medicine, Department of Radiology, Alexandria University, for her great support and assistance with the autodensitometric readings.

I would like to thank **Dr. Mohamed Zaher** for his patience and assistance in scanning the pictures of the present study.

Finally, I would like to thank **Prof. Dr. Samir Khohel**, Head of Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, for his continuous encouragement and support.

LIST OF CONTENTS

	Page
Introduction	1
Review of Literature	5
I. Clinical Evaluation of Root-End Filling	. 5
II. Sealing Ability	14
III. The Use of Ultrasonics in Root-End Preparation	44
IV. Cytotoxicity and Biocompatibility	53
Aim of the Work	68
Materials and Methods	69
Materials	69
I. In-Vivo Study	69
II. In-Vitro Study	70
Methods	76
I. In-Vivo Study	76
II. Sealing Ability	86
III. Cytotoxicity	90
Results	. 97
A. Clinical Results	97
B. Sealing Ability	119
C. Cytotoxicity	125
Discussion	139
Summary	155
References	160
Protocol of Thesis	
Appendix	
Arabic Summary	

LIST OF TABLES

Table	Title	Page
I	The mean score values and standard deviation of the	110
	optical density obtained from the autodensitometer	
	for group I (root-end filled with Dyract).	
II	The mean score values and standard deviation of the	111
	optical density obtained from the autodensitometer	
	for group II (root-end filled with Super EBA).	
III	The mean score values and standard deviation of the	112
	optical density obtained from the autodensitometer	
	for group III (root-end filled with amalgam).	
IV	The mean score values and standard deviation of the	113
	optical density obtained from the autodensitometer	
	for group IV (root-end filled with MTA).	
V	The mean score values and standard deviation of the	120
	four groups tested in millimeters using	
	stereomicroscope at 1.8 magnification.	
VI	The mean cytotoxicity reading assay using Vero cell	130
	line in millimeters of fresh, 24 hours and one week	
	sample of Dyract (group I).	
VII	The mean cytotoxicity reading assay using Vero cell	131
	line in millimeters of fresh, 24 hours and one week	
,	sample of Super EBA (group II).	
VIII	The mean cytotoxicity reading assay using Vero cell	132
	line in millimeters of fresh, 24 hours and one week	
	sample of amalgam (group III).	
IX	The mean cytotoxicity reading assay using Vero cell	133
	line in millimeters of fresh, 24 hours and one week	
	sample of MTA (group IV).	

LIST OF FIGURES

Figure	Title	Page
1	Light cure Dyract.	74
2	Super EBA (Fast Set).	74
3	Valiant Ph. D.	75
4	Mineral trioxide aggregate.	75
5	Oschsenbein Leubke flap.	78
6	Double vertical intrasulcular flap.	78
7	Incision of the flap.	79
8	Reflected full thickness mucoperiosteal flap.	79
9	Bone cavity after curettage.	82
10	Ultrasonic root-end preparation.	82
11	Flap in place after being sutured.	84
12	Flap one week later after removal of the stitches.	84
13	Suprason, Satelec with appropriate size of retrotip.	89
14	Stereomicroscope.	89
15	Biohazard laminar flow hood (Class II).	91
16	CO ₂ incubator.	91
17	Inverted microscope.	93
18	Monolayer of cells at magnification (10 \times 10).	93
19	Monolayer of cells at magnification (10 \times 40).	94
20	Samples placed over the agar.	94
21	Preoperative and different postoperative follow up X-	98
	rays of 1 of a 16-year-old boy root end filled with	
	Dyract.	

Figure	Title	Page
22	Preoperative and different postoperative follow up X-	99
	rays of 1 of a 19-year-old girl root end filled with	
	Super EBA.	
23	Preoperative and different postoperative follow up X-	100
	rays of 1 1 of a 17-year-old boy. 1 Root-end	
	filled with Super EBA, while $\frac{1}{2}$ root-end filled with	
	MTA.	
24	Preoperative and different postoperative follow up X-	101
	rays of $\frac{1}{1}$ of a 19-year-old girl. $\frac{1}{1}$ Root-end	
	filled with Dyract, while 1 root-end filled with	
	Super EBA.	
25	Preoperative and different postoperative follow up X-	102
	rays of 1 of a 28-year-old woman root-end filled	
	with Super EBA.	
26	Preoperative and different postoperative follow up X-	104
	rays of 1 2 of a 34-years-old man. 1 Root-end	
	filled with MTA, while $\frac{1}{2}$ root-end filled with	
	amalgam.	
27	Preoperative and different follow up X-rays of 1	105
	of a 31-years-old man root-end filled with amalgam.	
28	Preoperative and different follow up X-rays of 1	106
	of a 20-years-old girl root-end filled with amalgam.	
29	Preoperative and different postoperative follow up X-	107
	rays of 1 of a 16-years-old girl root-end filled	
	with MTA.	

Figure	Title	Page
30	Preoperative and different postoperative follow up X-	108
	rays of 123 of a 35-years-old woman. 1 Root-	
	end filled with amalgam, 2 root-end filled with	
	Super EBA, while 3 root-end filled with MTA.	
31	Line graph representing the mean score values of the	114
	optical density in group I (root-end filled with Dyract)	
	at the different observation periods.	
32	Line graph representing the mean score values of the	115
	optical density in group II (root-end filled with Super	
	EBA) at the different observation periods.	
33	Line graph representing the mean score values of the	116
	optical density in group III (root-end filled with	
	amalgam) at the different observation periods.	
34	Line graph representing the mean score values of the	117
	optical density in group IV (root-end filled with MTA)	
	at the different observation periods.	
35	Line graph showing the course of healing of the	118
	different tested materials in relation to their	
	preoperative phase which served as a control.	
36	Sealing ability of gutta percha and sealer to serve as	121
	a positive control.	
37	Sealing ability of a tooth root-end filled with sticky	121
	wax to serve as a negative control.	
38	Sealing ability of amalgam demonstrating the highest	122
	leakage.	
39	Sealing ability of MTA.	122

Figure	Title	Page
40	Sealing ability of Dyract demonstrating the least	123
	amount of leakage.	
41	Sealing ability of Super EBA.	123
42	Mean score leakage values of the different tested	124
	materials in millimeters immediately after root-end	
	filling.	
43	Petri dish showing cell lysis of fresh sample of Dyract	126
	and Super EBA.	
44	Petri dish showing cell lysis of fresh sample of	126
	amalgam and MTA.	
45	Petri dish showing cell lysis of 24-hours sample of	127
	Dyract and Super EBA.	
46	Petri dish showing cell lysis of 24-hours sample of	127
	amalgam and MTA.	
47	Petri dish showing cell lysis of one-week sample of	128
	Dyract and Super EBA.	
48	Petri dish showing cell lysis of one-week sample of	128
	amalgam and MTA.	
49	The mean cytotoxicity readings of fresh, 24 hours and	134
	one week sample of the different tested materials.	40-
50	The mean cytotoxicity readings of fresh, 24 hours and	135
	one week sample of Dyract (group I) in millimeters.	426
51	The mean cytotoxicity readings of fresh, 24 hours and	136
	one week sample of Super EBA (group II) in	
	millimeters.	