

SIZE EFFECT ON SHEAR STRENGTH OF NORMAL AND WIDE BEAMS WITH NORMAL AND HIGH STRENGTH CONCRETE

By

Mohamed Gamil Elsayed Megahed

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Structural Engineering

SIZE EFFECT ON SHEAR STRENGTH OF NORMAL AND WIDE BEAMS WITH NORMAL AND HIGH STRENGTH CONCRETE

By Mohamed Gamil Elsayed Megahed

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Structural Engineering

Under the Supervision of

Prof. Dr. Nabil A. B. Yehia

Professor of Concrete Structures Structural Engineering Department Faculty of Engineering, Cairo University

SIZE EFFECT ON SHEAR STRENGTH OF NORMAL AND WIDE BEAMS WITH NORMAL AND HIGH STRENGTH CONCRETE

By Mohamed Gamil Elsayed Megahed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Structural Engineering

Approved by the
Examining Committee

Prof. Dr. Nabil A. B. Yehia, Thesis Main Advisor

Prof. Dr. Wahba Wahba El-Tahan, Internal Examiner

Prof. Dr. Ahmed Sherif Essawy, External Examiner

Professor of RC Structures, Faculty of Engineering, Ain Shams University

Engineer's Name: Mohamed Gamil Elsayed Megahed

Date of Birth: 1/1/1983 **Nationality:** Egyptian

E-mail: gamel1983@yahoo.com

Phone: 0122/7004784

Address: Mina-Elkameh, Sharkia, Egypt

Registration Date: 01/10/2010 **Awarding Date:** / /

Degree: Doctor of Philosophy **Department:** Structural Engineering

Supervisors: Prof. Dr. Nabil A. B. Yehia

Examiners: Prof. Dr. Ahmed Sherif Essway (*Professor of RC Structures*

- Faculty of Engineering, Ain Shams University)

Prof. Dr. Wahba Wahba El-Tahan

Prof. Dr. Nabil A. B. Yehia

Title of Thesis:

Size Effect on Shear Strength of Normal and Wide Beams With Normal and High Strength Concrete

Key Words:

shear strength; concrete beams; size effect.

Summary:

The main objective of this research was to investigate to what extent the beam depth, width, longitudinal reinforcement ratio and concrete compressive strength, influence the ultimate shear capacity of reinforced concrete beams without transverse reinforcement. An experimental program was undertaken to study these parameters and to evaluate the empirical formula of the current Egyptian Code of practice (ECP 203-2017) [1] for calculating shear strength of concrete beams. The experimental program was performed for eighteen beams with variables depths; 125, 250, 350, and 600 mm. The concrete cube compressive strength varied from 25 MPa. To 87.5 MPa. The longitudinal reinforcement ratio varied from .8 % to 1.2%. The tested beams had constant clear span to effective depth ratio (l/d=6). It was found that the shear strength of beams decreases as the beam effective depth increases, and as longitudinal reinforcement ratio decreases. The ultimate load of the tested specimens was verified analytically using a finite element program "ABAQUS 6.13", and the obtained predictions gave a good agreement with the experimental results. A parametric study was performed using the same finite element program to estimate the ultimate shear capacity of various depths of beams.

Disclaimer

I hereby declare that this thesis is my original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Mohamed Gamil Elsayed Megahed Date:

Signature:

Acknowledgement

The author wishes to express his sincere appreciation and gratitude to **Dr. Nabil A. B. Yehia**, Professor of RC Structures, Cairo University, for his continuous supervision of this work, help, advice and guidance through the research program.

Special thanks are due to **Dr. Mohamed Morsy Abd El-Ghaffar Salem**, Teacher of RC Structures, Housing and Building National Research Center for his great help and technical support during the conduction of this work. Moreover, gratitude is due to **Dr. Sherif Elzeny**, Professor of RC Structures, Housing and Building National Research Center, for his helpfulness and self-denial.

Last, but not least, the author thanks his family for their encouragement and prayers, and dedicates his work to the soul of his father.

Table of Contents

Disclaimer	i
Acknowledgement	ii
Table of Contents	iii
List of Tables	vi
List of Figures	vii
List of Symbols	xii
Abstract	xv
Chapter 1: Introduction	1
1.1 General	1
1.2 Objective and scope	1
1.3 Thesis outline	1
Chapter 2: Literature Review	3
Introduction	3
2.1 Members without Web Reinforcement	3
2.2 Parameters Influencing Shear Strength	5
2.2.1 Shear span to depth ratio, a/d	5
2.2.2 Concrete characteristic compressive strength	5
2.2.3 Flexural reinforcement ratio.	5
2.2.4 Beam size.	6
2.3 Previous Work	6
2.4 Codes Review for Shear in Beams without Shear Reinforcement	27
2.4.1 ECP 203-2017 [1] Provisions	27
2.4.2 ECP 203-2007 [31] Provisions	27
2.4.3 ACI 318-14 [32] Provisions	28
2.4.4 JSCE Guidelines for Concrete [33] Provisions	29
Chapter 3: Experimental Program	30
General	30
3.1 Test Program	30
3.2 Specimens details	32
3.3 Specimens Preparation	48
3.4 Materials	50
3.4.1 Coarse aggregate	50

3.4.2 Fine aggregate	. 50
3.4.3 Cement	. 51
3.4.4 Mixing water	. 51
3.4.5 Reinforcement steel	. 51
3.4.6 Silica fume	. 52
3.4.7 Super-plasticizer	. 52
3.5 Concrete mix	. 52
3.6 Test set-up	. 52
3.7 Measurements	. 53
3.8 Test procedures	. 54
Chapter 4: Results of the Experimental Program	. 55
General	. 55
4.1 The crack patterns and the modes of failure	. 55
4.1.1 Specimens in group (I)	. 55
4.1.2 Specimens in group (II)	. 56
4.1.3 Specimens in group (III)	. 58
4.1.4 Specimens in group (IV)	. 60
4.1.5 Specimens in group (V)	. 61
5.1.6 Specimens in group (VI)	. 62
4.1.7 Specimens in group (VII)	. 64
4.2 Load-deflection relationships	. 67
4.2.1 Specimens in group (I)	. 67
4.2.2 Specimens in group (II)	. 69
4.2.3 Specimens in group (III)	. 70
4.2.4 Specimens in group (IV)	. 71
4.2.5 Specimens in group (V)	. 72
4.2.6 Specimens in group (VI)	. 73
4.2.7 Specimens in group (VII)	. 75
4.3 Load-Strain relationships	. 77
4.3.1 Specimens in group (I)	. 77
4.3.2 Specimens in group (II)	. 78
4.3.3 Specimens in group (III)	. 79
4.3.4 Specimens in group (IV)	. 80
4.3.5 Specimens in group (V)	. 81
4.3.6 Specimens in group (VI)	. 82

4.3.7 Specimens in group (VII)	84
4.4 Influence of Width on Shear Stress	86
4.5 Influence of Characteristic Compressive Strength on Shear Stress	86
4.6 Influence of Percentage of Longitudinal Reinforcement on Shear Stress	87
4.7 Influence of Effective Depth on Shear Stress	88
4.8 Failure Loads of Tested Specimens versus Codes Prediction	88
Chapter 5: Finite Element Modeling	95
5.1 Introduction	95
5.2 The material models	95
5.2.1 Concrete model	95
5.2.1.1 Tension stiffening relationship	97
5.2.1.2 Compressive stress-strain relationship	99
5.2.2 Steel reinforcing bar model	101
Chapter 6: Nonlinear Analysis and Parametric Study	107
Numerical model verification	107
6.1 Verification of the load-deflection behavior	107
6.1.1 Specimens in group (I)	107
6.1.2 Specimens in group (II)	108
6.1.3 Specimens in group (III)	110
6.1.4 Specimens in group (IV)	111
6.1.5 Specimens in group (V)	112
6.1.6 Specimens in group (IV)	113
6.1.7 Specimens in group (VII)	115
6.2 Parametric study	118
6.2.1 Parametric Study Specimens Details	120
6.2.2 Results of parametric study	138
6.3 Proposed Equation for Prediction of Shear Strength in Beams	141
Chapter 7: Summary and Conclusions	145
Summary	145
Conclusions	145
Recommendations	146
D. 6	1.47

List of Tables

Table 2.1: Proportion of Shear Carried by Transfer Mechanisms [12]	4
Table 2.2 : Detailed method for calculating V _c	28
Table 3.1: Details of the specimens	31
Table 3.2 : Properties of steel reinforcement	52
Table 4.1: Ultimate Loads of Tested Specimens versus Codes' Predictions	89
Table 4.2 : Normalized Shear Strength for tested Beams	90
Table 6.1: Ultimate Loads of Tested Specimens versus Numerical Model	117
Table 6.2 : Details of the specimens in parametric study	119
Table 6.3: Normalized Shear Stress for specimens in the parametric study	139
Table 6.4 : Shear Strength for tested beams versus equation	144

List of Figures

Figure 2.1: Internal Forces in a Cracked Beam without web reinforcement [9]	3
Figure 2.2: Typical loading arrangement and cross sections of the four beam series	by
Kani [13]	7
Figure 2.3 : Relative strength r _u versus a/d for reinforced concrete beams of various	
depths by Kani [13]	8
Figure 2.4 : Comparison of tested beams of different widths by Kani [13]	9
Figure 2.5: Test Specimen geometry by Bazant and Kazemi [2]	10
Figure 2.6: Test Specimen geometry by Lubell [5]	11
Figure 2.7: Test Specimens geometry by Tompos [22]	12
Figure 2.8: Test Specimens Details by Sneed [24]	13
Figure 2.9 : Average Shear Stress at Failure, versus depth by Sneed [24]	14
Figure 2.10: Details of 22 simple span beams by Collins and Kuchma [25]	15
Figure 2.11: Details of 12 continuous span beams by Collins and Kuchma [25]	16
Figure 2.12: The variation of failure shear stress ratio with beam depth by Collins a	nd
Kuchma [25]	17
Figure 2.13: Layout of Shear test on short beams	17
Figure 2.14: Nominal shear strength of short beams with different size [26]	18
Figure 2.15: Details of the cross section and arrangement of reinforcing bars [26]	18
Figure 2.16: Geometry and Loading of Slender Beams [27]	19
Figure 2.17: Cross Section Details of Slender Beams [27]	
Figure 2.18: Details of tested Beams [8]	20
Figure 2.19: Normalized shear stress at failure versus Specimen depth [8]	21
Figure 2.20: Details of tested Beams [28]	
Figure 2.21: Details of Group No.1 [29]	23
Figure 2.22 : Details of Group No.(2,4) [29]	24
Figure 2.23 : Details of Group No.(3) [29]	25
Figure 2.24: Test Setup for beam specimens [29]	25
Figure 2.25: Details of tested beams [14]	
Figure 2.26: Details of tested beams [30]	27
Figure 3.1 : Details of specimen B1	34
Figure 3.2 : Details of specimen B2	35
Figure 3.3 : Details of specimen B3	36
Figure 3.4 : Details of specimen B4	37
Figure 3.5 : Details of specimen B5	38
Figure 3.6 : Details of specimen B6	39
Figure 3.7: Details of specimen B7	40
Figure 3.8: Details of specimen B8	41
Figure 3.9: Details of specimen B9	42
Figure 3.10: Details of specimen B10	43
Figure 3.11 : Details of specimen B11	44
Figure 3.12 : Details of specimen B12	
Figure 3.13 : Details of specimen B13	46
Figure 3.14 : Details of specimen B14	

Figure 3.15 : Steel Reinforcement for Beams	
Figure 3.16 : Steel Reinforcement for Beams	49
Figure 3.17: Steel Reinforcement of B10 in Formwork	49
Figure 3.18 : Grading of Coarse aggregate	50
Figure 3.19 : Grading of Sand	51
Figure 3.20: Test set-up for specimens	53
Figure 3.21: LVDT locations for the specimens	54
Figure 3.22: Strain gauge locations for the specimens	54
Figure 4.1 : Specimen B1 at failure	55
Figure 4.2 : Specimen B2 at failure	56
Figure 4.3 : Specimen B3 at failure	57
Figure 4.4 : Specimen B4 at failure	57
Figure 4.5 : Specimen B5 at failure	58
Figure 4.6 : Specimen B6 at failure	
Figure 4.7 : Specimen B7 at failure	59
Figure 4.8: Specimen B8 at failure	
Figure 4.9: Specimen B9 at failure	61
Figure 4.10 : Specimen B10 at failure	61
Figure 4.11 : Specimen B11 at failure	62
Figure 4.12 : Specimen B12 at failure	
Figure 4.13 : Specimen B13 at failure	63
Figure 4.14 : Specimen B14 at failure	64
Figure 4.15 : Specimen B15 at failure	65
Figure 4.16: Specimen B16 at failure	65
Figure 4.17 : Specimen B17 at failure	66
Figure 4.18 : Specimen B18 at failure	67
Figure 4.19: load deflection relationship of beam B1	68
Figure 4.20: load deflection relationship of beam B2	68
Figure 4.21: load deflection relationship of beam B3	
Figure 4.22: load deflection relationship of beam B4	69
Figure 4.23: load deflection relationship of beam B5	70
Figure 4.24: load deflection relationship of beam B6	70
Figure 4.25: load deflection relationship of beam B7	71
Figure 4.26: load deflection relationship of beam B8	
Figure 4.27: load deflection relationship of beam B9	72
Figure 4.28: load deflection relationship of beam B10	
Figure 4.29: load deflection relationship of beam B11	73
Figure 4.30 : load deflection relationship of beam B12	
Figure 4.31: load deflection relationship of beam B13	74
Figure 4.32 : load deflection relationship of beam B14	
Figure 4.33: load deflection relationship of beam B15	
Figure 4.34: load deflection relationship of beam B16	
Figure 4.35: load deflection relationship of beam B17	
Figure 4.36: load deflection relationship of beam B18	
Figure 4.37: load strain relationship of beam B1	
Figure 4.38 : load strain relationship of beam B2	78

Figure 4.39: load strain relationship of beam B3	78
Figure 4.40: load strain relationship of beam B4	79
Figure 4.41: load strain relationship of beam B5	79
Figure 4.42: load strain relationship of beam B6	80
Figure 4.43: load strain relationship of beam B7	80
Figure 4.44: load strain relationship of beam B8	81
Figure 4.45: load strain relationship of beam B9	81
Figure 4.46: load strain relationship of beam B11	82
Figure 4.47: load strain relationship of beam B12	82
Figure 4.48: load strain relationship of beam B13	
Figure 4.49: load strain relationship of beam B14	
Figure 4.50 : load strain relationship of beam B15	84
Figure 4.51: load strain relationship of beam B16	
Figure 4.52 : load strain relationship of beam B17	
Figure 4.53: load strain relationship of beam B18	
Figure 4.54: Normalized Shear Strength vs. beam No	
Figure 4.55 : Shear Strength vs. beam No.	
Figure 4.56: Normalized Shear Strength vs. beam No	
Figure 4.57 : Shear capacity of tests vs. codes prediction capacities	
Figure 4.58: Normalized Shear Strength of tested beams	
Figure 4.59: Normalized Shear Strength vs. depth for Group II	
Figure 4.60: Normalized Shear Strength vs. depth for Group III	
Figure 4.61: Normalized Shear Strength vs. depth for Group V	
Figure 4.62: Normalized Shear Strength vs. depth for Group VI	
Figure 5.1: Response of concrete to uniaxial loading in a) tension b) compression	
(ABAQUS Analysis User's Manual [34])	
Figure 5.2 : Concrete tension stiffening models	
Figure 5.3 : Tension softening curve suggested by Massicotte	
Figure 5.4 : Modified tension softening curve	
Figure 5.5 : Stress-strain behavior of concrete under uniaxial compression	
Figure 5.6 : Stress-strain relationship for steel reinforcement	
Figure 5.7 : ABAQUS solid element library [34]	
Figure 5.8 : ABAQUS truss element library [34]	
Figure 5.9 : 3D Concrete mesh in ABAQUS	
Figure 5.10 : Steel reinforcement mesh in ABAQUS	
Figure 5.11 : Modeling for quarter of the concrete beam	
Figure 6.1 : Experimental Versus Numerical results for the load-deflection of spec	
B1	
Figure 6.2: Experimental Versus Numerical results for the load-deflection of spec	
B2	
Figure 6.3: Experimental Versus Numerical results for the load-deflection of spec	
B3	
Figure 6.4: Experimental Versus Numerical results for the load-deflection of spec	
B4	
Figure 6.5 : Experimental Versus Numerical results for the load-deflection of spec	
R5	

Figure 6.6: Experimental Versus Numerical results for the load-deflection of specin	
B6	
Figure 6.7 : Experimental Versus Numerical results for the load-deflection of specim B7	
Figure 6.8 : Experimental Versus Numerical results for the load-deflection of specim B8	
Figure 6.9: Experimental Versus Numerical results for the load-deflection of specim B9	nen
Figure 6.10 : Experimental Versus Numerical results for the load-deflection of	
specimen B10	men
Figure 6.12 : Experimental Versus Numerical results for the load-deflection of	
specimen B12	
specimen B13	
specimen B14 Figure 6.15: Experimental Versus Numerical results for the load-deflection of	
specimen B15	
specimen B16	
Figure 6.18: Experimental Versus Numerical results for the load-deflection of	
specimen B18	118
Figure 6.20 : Details of specimens B19 and B37	
Figure 6.22 : Details of specimen B21 and B39	
Figure 6.24: Details of specimen B23 and B41	125
Figure 6.25 : Details of specimen B24 and B42	127
Figure 6.27 : Details of specimen B26 and B44	
Figure 6.29 : Details of specimen B28 and B46	130
Figure 6.30 : Details of specimen B29 and B47	132
Figure 6.32 : Details of specimen B31 and B49	
Figure 6.34 : Details of specimen B33 and B51	135
Figure 6.36 : Details of specimen B35 and B53	137
Figure 6.37 : Details of specimens B36 and B54	

Figure 6.39: Normalized shear stress versus depth for specimens in G2	140
Figure 6.40: Normalized shear stress versus depth for specimens in G3	141
Figure 6.41: Normalized shear stress versus depth for specimens in G4	141
Figure 6.42: Normalized shear stress versus depth for specimens in G1	142
Figure 6.43: Normalized shear stress versus depth for specimens in G2	142
Figure 6.44: Normalized shear stress versus depth for specimens in G3	143
Figure 6.45: Normalized shear stress versus depth for specimens in G4	143
Figure 6.46: Shear strength of tested beams vs proposed equation strength	144