



### NUMERICAL INVESTIGATION OF CONDITIONED AIR DISTRIBUTION INSIDE A NEW METRO CAR IN EGYPT

By

Eng. Mostafa Mahmoud Ahmed Abd-Allah

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfilment of the Requirements for the Degree of MASETER OF SCINCE

In

MECHANICAL POWER ENGINEERING

# NUMERICAL INVESTIGATION OF CONDITIONED AIR DISTRIBUTION INSIDE A NEW METRO CAR IN EGYPT

By

Eng. Mostafa Mahmoud Ahmed Abd-Allah

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfilment of the Requirements for the Degree of MASETER OF SCINCE

In

#### MECHANICAL POWER ENGINEERING

**Under Supervisor of** 

**Dr. Gamal El-Hariry** 

Dr. Ahmed M. Abouzaid

Associate Professor

Mechanical Power Department
Faculty of Engineering
Cairo University

Lecturer
Mechanical Power Department
Faculty of Engineering
Cairo University

# NUMERICAL INVESTIGATION OF CONDITIONED AIR DISTRIBUTION INSIDE A NEW METRO CAR IN EGYPT

By

Eng. Mostafa Mahmoud Ahmed Abd-Allah

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfilment of the Requirements for the Degree of MASETER OF SCINCE

In

#### MECHANICAL POWER ENGINEERING

#### **Under Supervisor of**

Assoc.Prof.Dr.Gamal A.Hariry

Advisor

Mech.power Dept., Faculty of Eng., Cairo Univ.

Prof.Dr.Sayed A.Kasseb Internal Examiner Mech.power Dept., Faculty of Eng., Cairo Univ.

**Prof.Dr.Eed A.Abdel-Hadi** External Examiner Mech.power Dept., Shobra Faculty of Eng., Benha Univ.

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2019

**Engineer's Name:** Eng. Mostafa Mahmoud Ahmed Abd-Allah

**Date of Birth:** 07/12/1987

**Nationality:** Egyptian

E-mail: Engmost2009@yahoo.com

**Phone:** 01229067347

**Address:** 7, Gamal Abd-Elnaser .,St,Ehwa,Bani-Suief.

**Registration:** 1/3/2014

**Awarding Date:** 2019

**Degree:** Master of Science

**Department:** Mechanical Power Department

**Supervisors:** Assoc.Prof.Dr. Gamal A.Hariry

Dr. Ahmed M. Abouzaid

**Examiners:** Prof.Dr.Eed A.Abdel-Hadi (External Examiner)

Prof.Dr.Sayed A.Kasseb (Internal Examiner)

Assoc.Prof.Dr.Gamal A.Hariry (Thesis Main Advisor)

**Title of Thesis:** NUMERICAL INVESTIGATION OF CONDITIONED AIR DISTRIBUTION INSIDE A NEW METRO CAR IN EGYPT.

**Key Words:** Metro car; Computational fluid dynamic (CFD); European Standard EN-14750-1:2006; Thermal comfort; PMV.

#### **Summary:**

Egypt expands in updating the old metro cars by new conditioned metro cars to achieve best thermal comfort of passengers inside the vehicle. Using FLUENT (ANSYS 16), the best temperature and flow distributions for both seated and standing people inside the metro car are obtained when air incident by angle 75° (case 2) with respect to horizontal axis giving acceptable results with respect to rolling stocks European standards EN 14750-1:2006 and it gives the best thermal comfort for both seated and standing people based on PMV model even with high PMV value from 1 to 2.5 which gives best thermal comfort when distribute the same number of inlet air vents as a modified model with PMV from 0.6 to 1.5.



## **Disclaimer**

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other universities or institute.

| I further declare that I have appropriately | acknowledgement a | all sources | used | and |
|---------------------------------------------|-------------------|-------------|------|-----|
| have cited them in the references section.  |                   |             |      |     |

| Name: | Date:      |
|-------|------------|
|       | Signature: |

### **ACKNOWLEDGEMENT**

I hereby would like to express my deep gratitude and thanks to Dr. Gamal El-Hariry and Dr. Ahmed M.Abouzaid for their support, continuous encouragement and distinctive supervision throughout the course of this work. They helped providing me with up to date technical references that were of great help in the present work.

Also, I cannot express; in words; my thanks and gratitude to my Family for their great and continuous help and support they provided me to finish this work in a suitable form.

Nevertheless, I cannot forget the support of my bosses in my work for their encouragement and giving me all time I needed in the scope of work.

## LIST OF CONTENTS

| SUBJECT                     | PAGE  |
|-----------------------------|-------|
| CONTENTS                    | I     |
| LIST OF FIGURES             | V     |
| LIST OF TABLES              | XII   |
| SYMBOLS AND ABBREVIATIONS   | XIV   |
| ABSTRACT                    | XVIII |
|                             |       |
| CHAPTER 1 INTRODUCTION      |       |
| 1.1 General                 | 1     |
| 1.2 Present Work            | 4     |
| 1.3 Thesis Layout           | 5     |
| CHAPTER 2 LITERATURE REVIEW |       |
| 2.1 Introduction            | 7     |
| 2.2 General cases           | 7     |

## **CHAPTER 3 GOVERNING EQUATIONS**

| 3.1 Governing Equations                              | 36    |
|------------------------------------------------------|-------|
| 3.2 Turbulence model                                 | 37    |
| 3.2.1 K- ε model                                     | 37    |
| 3.2.2 K-ω model                                      | 40    |
|                                                      |       |
| CHAPTER 4 NUMERICAL INVESTIGATION PRINCE             | IPLES |
| 4.1 CFD Validation                                   | 43    |
| 4.2 Three Dimensional Modeling                       | 45    |
| 4.3 Mesh Size                                        | 45    |
| 4.4 Model Description                                | 45    |
| 4.5 Boundary Condition:                              | 46    |
| 4.5.1 Inlet and Outlet Air Conditions                | 46    |
| 4.5.2 Walls:                                         | 47    |
| 4.5.3 Solution Algorithm                             | 47    |
| 4.6 Modeled Case Studies                             | 48    |
| 4.7 Results of Case Studies                          | 50    |
| 4.7.1 Case 1                                         | 50    |
| 4.7.2 Case 2                                         | 59    |
| 4.7.3 Case 3                                         | 69    |
| 4.7.4 Case 4                                         | 72    |
| 4.7.5 Case 5                                         | 80    |
| 4.7.6 Mesh independency Test                         | 88    |
|                                                      |       |
| 4.7.7 Results of Average temperatures and Velocities | 89    |
| for Previous Cases Studied                           |       |

| 4.7.8 The Best Temperature and Air Flow Distributions case study | 91  |
|------------------------------------------------------------------|-----|
| 4.0 Mali lation Describe of anna 2 mile Francesco                | 02  |
| 4.8 Validation Results of case 2 with European                   | 93  |
| Standard EN-14750-1:2006[2]                                      |     |
| 4.9 The Best Thermal Comfort Case Study                          | 95  |
| 4.9.1 Fanger's Model                                             | 96  |
| 4.9.1.1 Introduction                                             | 96  |
| 4.9.1.2 The comfort equation                                     | 97  |
| 4.9.1.3 Heat balance                                             | 97  |
| 4.9.1.4 Sweat rate and skin temperature for comfort              | 99  |
| 4.9.1.5 Predicted mean vote (PMV) and predicted percentage       | 99  |
| dissatisfied (PPD)                                               |     |
| 4.9.2 PMV for the previous five studied cases                    | 101 |
| 4.9.2.1: PMV for seated people at height y=1.1 m                 | 101 |
| 4.9.2.2: PMV for standing people at height y=1.7 m               | 104 |
| 4.9.3 The Best Thermal comfort Case                              | 107 |
| 4.10 New Modified Model                                          | 108 |
| 4.10.1 Seated People                                             | 109 |
| 4.10.2 Standing People                                           | 113 |
| 4.10.3 Both Seated and Standing People                           | 119 |

| 4.10.5 Results of Modified Model                                                                                                   | 124               |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| CHAPTER 5 CONCLUSIONS AND SUGGESTED WORK                                                                                           | FUTURE            |
| <ul><li>5.1 Introduction</li><li>5.2 Conclusion of the present work</li><li>5.3 Recommendations for Future work</li></ul>          | 126<br>126<br>128 |
| REFERENCES ANNEX                                                                                                                   | 129               |
| Annex A Acceptance criteria of new metro conditioned cars with respect to European standard EN 14750-1:2006 of Cairo metro company | 132               |
| Annex B Solar radiation calculation of the designer                                                                                | 135               |

122

4.10.4 Standing People at corners

## LIST OF FIGURES

| FIGURE DESC |                                                                             | CRIPTION |
|-------------|-----------------------------------------------------------------------------|----------|
| PAG         | E                                                                           |          |
| 1.1         | Old metro cars                                                              | 1        |
| 1.2         | New metro cars in first old line                                            | 2        |
| 2.1         | Temperature gradients distribution at height of 1.25 m above                | 8        |
|             | the floor (moving phase)                                                    |          |
| 2.2         | Temperature gradients distribution at height of 1.75 m above                | 8        |
|             | the floor (moving phase)                                                    |          |
| 2.3         | Temperature gradients distribution at height of 1.25 m above                | 9        |
|             | the floor (traffic stop phase)                                              |          |
| 2.4         | Temperature gradient distribution at height of 1.75 m above                 | 9        |
|             | the floor (traffic stop phase)                                              |          |
| 2.5         | Scheme of the experimental measurement points                               | 10       |
| 2.6         | Comparison of simulation and measurements (horizontal temperatures)         | 12       |
| 2.7         | Comparison of simulation and measurements (vertical temperatures)           | 12       |
| 2.8         | Absolute value of the velocity vector in m/s along the width of the vehicle | 13       |
|             | in a height of 1000 mm: -1300 mm is left wall, + 1300 mm is the right wall  | 1        |

| 2.9  | First class compartment of a regional train with an implemented virtual      | 14 |
|------|------------------------------------------------------------------------------|----|
|      | surface displaying the velocity vectors of the air flow. The small velocity  |    |
|      | of 0.01 m/s is displayed blue, the higher velocity of 0.8 m/s is colored red |    |
| 2.10 | Tram model view                                                              | 15 |
| 2.11 | Inlets and exhausts openings for part 1                                      | 15 |
| 2.12 | Passenger's distribution in car C1                                           | 16 |
| 2.13 | Selected horizontal and vertical planes                                      | 17 |
| 2.14 | Velocity fields for plane X1 (case 1)                                        | 18 |
| 2.15 | Velocity fields for plane X2 (case 1)                                        | 19 |
| 2.16 | Velocity fields for plane X1 (case 3)                                        | 20 |
| 2.17 | Velocity fields for plane X2 (case 3)                                        | 20 |
| 2.18 | Temperature fields in the horizontal plane at +1.1 m, cases (1-4)            | 21 |
| 2.19 | Temperature fields at vertical planes X1, X2, X3, and X4 for Case 3          | 22 |
| 2.20 | The CFD geometrical model of passenger train                                 | 25 |
| 2.21 | Velocity streamlines at zero degree                                          | 26 |
| 2.22 | Velocity streamlines at 15 degree                                            | 27 |
| 2.23 | Velocity streamlines at 25 degree                                            | 28 |
| 2.24 | List of the investigated cases                                               | 29 |
| 2.25 | Predicted streamlines emerging from inlet surfaces and                       | 30 |
|      | surface temperature distribution for the reference case                      |    |

| 2.26 | Velocity and temperature distribution in the cross-section of     | 31 |
|------|-------------------------------------------------------------------|----|
|      | row 6 for the reference case                                      |    |
| 2.27 | Predicted streamlines emerging from inlet surfaces and surface    | 31 |
|      | temperature distribution for the TI case                          |    |
| 2.28 | Velocity and temperature distribution in the cross-section of     | 32 |
|      | row 6 for the TI case                                             |    |
| 2.29 | Predicted streamlines emerging from inlet surfaces and surface    | 33 |
|      | temperature distribution for the MB case                          |    |
| 2.30 | Velocity and temperature distribution in the cross-section over   | 33 |
|      | row 6 for the MB case                                             |    |
| 2.31 | The train model                                                   | 34 |
| 2.32 | Contour of velocity fields on cross section                       | 35 |
| 3.1  | Fluid element and coordinate system used in the conservation laws | 36 |
| 4.1. | Temperture fields on cross section                                | 43 |
| 4.2  | Temperture curves at height 1.6 m                                 | 44 |
| 4.3  | The velocity gauges for same 10 chain points at 1.6 m             | 44 |
| 4.4  | Metro car model view                                              | 46 |
| 4.5  | Solution Algorithm                                                | 48 |
| 4.6  | The four different studied sections.                              | 50 |
| 4.7  | Temperature contours (°C) (case 1.a), horizontal plane at y=1.1 m | 51 |
| 4.8  | Velocity contours (m/s) (case 1.a), horizontal plane at y=1.1 m   | 52 |

| 4.9  | Temperature contours (°C) (case 1.b), vertical plane at z=0.3 m   | 53 |
|------|-------------------------------------------------------------------|----|
| 4.10 | Velocity contours (m/s) (case 1.b), vertical plane at z=0.3 m     | 54 |
| 4.11 | Temperature contours (°C) (case 1.C), horizontal plane at y=1.7 m | 55 |
| 4.12 | Velocity contours (m/s) (case 1.c), horizontal plane at y=1.7 m   | 56 |
| 4.13 | Temperature contours (°C) (case 1.d), vertical plane at z=1.2 m   | 57 |
| 4.14 | Velocity contours (m/s) (case 1.d), vertical plane at z=1.2 m     | 57 |
| 4.15 | Velocity contours (m/s) (case 1.e), vertical plane at x=11 m      | 58 |
| 4.16 | Temperature contours (°C) (case 1.e), vertical plane at x=11 m    | 59 |
| 4.17 | Temperature contours (°C) (case 2.a), horizontal plane at y=1.1 m | 60 |
| 4.18 | Velocity contours (m/s) (case 2.a), horizontal plane at y=1.1 m   | 61 |
| 4.19 | Temperature contours (°C) (case 2.b), vertical plane at z=0.3 m   | 62 |
| 4.20 | Velocity contours (m/s) (case 2.b), vertical plane at z=0.3 m     | 63 |
| 4.21 | Temperature contours (°C) (case 2.c), horizontal plane at y=1.7 m | 64 |
| 4.22 | Velocity contours (m/s) (case 2.c), horizontal plane at y=1.7 m   | 65 |
| 4.23 | Temperature contours (°C) (case 2.d), vertical plane at z=1.2 m   | 66 |
| 4.24 | Velocity contours (m/s) (case 2.d), vertical plane at z=1.2 m     | 67 |
| 4.25 | Velocity contours (m/s) (case 2.e), vertical plane at x=11 m      | 68 |
| 4.26 | Temperature contours (°C) (case 2.e), vertical plane at x=11 m    | 68 |
| 4.27 | Temperature contours (°C) (case 3.a), horizontal plane at y=1.1 m | 69 |
| 4.28 | Temperature contours (°C) (case 3.c), horizontal plane at y=1.7 m | 70 |
| 4.29 | velocity contours (m/s) (case 3.e), vertical plane at x=11 m      | 71 |

| 4.30 | Temperature contours (°C) (case 3.e), vertical plane at $x=11 \text{ m}$    | / ]        |
|------|-----------------------------------------------------------------------------|------------|
| 4.31 | Temperature contours (°C) (case 4.a), horizontal plane at y=1.1 m           | 72         |
| 4.32 | Velocity contours (m/s) (case 4.a), horizontal plane at y=1.1 m             | 73         |
| 4.33 | Temperature contours (°C) (case 4.b), vertical plane at z=0.3 m             | <b>7</b> 4 |
| 4.34 | Temperature contours (°C) (case 4.c), horizontal plane at y=1.7 m           | 75         |
| 4.35 | Velocity contours (m/s) (case 4.c), horizontal plane at y=1.7 m             | 76         |
| 4.36 | Temperature contours (°C) (case 4.d), vertical plane at z=1.2 m             | 77         |
| 4.37 | Velocity contours (m/s) (case 4.d), vertical plane at z=1.2 m               | 78         |
| 4.38 | Velocity contours (m/s) (case 4.e), vertical plane at x=11 m                | 79         |
| 4.39 | Temperature contours (°C) (case 4.e), vertical plane at x=11 m              | 79         |
| 4.40 | Temperature contours (°C) (case 5.a), horizontal plane at y=1.1 m           | 80         |
| 4.41 | Velocity contours (m/s) (case 5.a), horizontal plane at y=1.1 m             | 81         |
| 4.42 | Temperature contours (°C) (case 5.b), vertical plane at z=0.3 m             | 82         |
| 4.43 | Temperature contours (°C) (case 5.c), horizontal plane at y=1.7 m           | 83         |
| 4.44 | Velocity contours (m/s) (case 5.c), horizontal plane at y=1.7 m             | 84         |
| 4.45 | Temperature contours (°C) (case 5.d), vertical plane at z=1.2 m             | 85         |
| 4.46 | Velocity contours (m/s) (case 5.d), vertical plane at z=1.2 m               | 86         |
| 4.47 | velocity contours (m/s) (case 5.e), vertical plane at x=11 m                | 87         |
| 4.48 | Temperature contours (°C) (case 5.e), vertical plane at x=11 m              | 87         |
| 4.49 | Shape of mesh cells                                                         | 88         |
| 4.50 | Temperature gradient at a horizontal line for different mesh interval sizes | 89         |