ROLE OF MDCT IN DIAGNOSIS OF DIFFERENT CALCIFIED CHEST LESIONS

Thesis Submitted for the partial fulfillment of the Master degree in Radiodiagnosis

By

Reham Mohammed Abd EL-Hai Refaie

M.B.B.CH (Faculty of Medicine – Cairo University)

Supervised by

Prof. Youssriah Yahia Sabri

Professor of Radiodiagnosis

Faculty of Medicine – Cairo University

Dr. Takeya Ahmed Taymour

Lecturer of Radiodiagnosis

Faculty of Medicine – Cairo University

Dr. HebaAllah Ahmed Moussa

Lecturer of chest

Faculty of Medicine- Cairo university

2015

Abstract

The role of MDCT imaging in diagnosis and evaluation of different calcified chest lesions is central, being accurate and non-invasive. The cause of such calcifications may be determined by means of the location and pattern of the calcific areas of increased opacity and knowledge of the associated clinical features. MDCT is currently the imaging modality of choice in diagnosis of different calcified chest lesions of different structures, being superior to chest radiography in demonstrating the presence and extent of chest abnormalities.

Keywords: MDC, CECT, PAM

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my *Prof. Dr Youssriah Yahia Sabri*, Professor of Radiodiagnosis, Faculty of Medicine, Cairo University, for her continuous support, patience, motivation and enthusiasm. I could not have imagined having a better advisor and mentor. Without her help, I would never have finished this research.

Dr Takeya Taymour, Lecturer of Radiodiagnosis, Faculty of Medicine, Cairo University and *Dr HebaAllah Ahmed Moussa*, Lecturer of Chest, Faculty of Medicine, Cairo university, deserve my sincere expression of thanks for providing me with invaluable help and support.

I am also extremely indebted to *Dr. Inas Mohammed Mostafa*, Assistant Lecturer of Radiodiagnosis, Faculty of Medicine, Banha University, for offering the necessary infrastructure to accomplish my research work.

It's my fortune to gratefully acknowledge the care of all members of my family and friends. Your understanding, faith, patience and support to me through the good and hard times are invaluable.

Reham Mohamed Refaie

TABLE OF CONTENTS

Content	Page
List of abbreviations	1
List of tables	2
List of figures	3
Introduction	8
Aim of the study	9
Review of literature	10
Chest anatomy	10
Pulmonary calcification	21
Pleural calcification	52
Lymphnode calcification	56
Cardiac and Vasular calcification	62
Airway calcification	64
Chest wall calcification	65
Patients and methods	70
Results	75
Case presentation	89
Discussion	118
Summary and conclusion	128
References	129
Arabic summary	136

LIST OF ABBREVIATIONS

MDCT Multi-detector computed tomography.

NECT Non-enhanced copmuted tomography.

CECT Contrast enhanced computed tomography.

HRCT High resolution computed tomography.

PFT Pulmonary function test.

TBB Trans-bronchial biopsy.

US Ultrasound.

PAM Pulmonary alveolar microlithiasis.

LIST OF TABLES

NO.	Content	Page
Table 1	Patients' clinical presentation.	70
Table 2	NECT technique in Kasr Al-Ainy.	72
Table 3	CECT technique in Kasr Al-Ainy.	72
Table 4	HRCT technique in Kasr Al-Ainy.	73
Table 5	Lung Cystic lesions with calcification; CT Findings And Pathology.	78
Table 6	Other lung lesions with calcification.	79
Table 7	Mediastinum masses and cysts with calcification; CT Findings And Pathology.	81
Table 8	Cases showing mediastinum and lung lesions with calcification.	86

NO.	Content	Page
Figure 1	Lung segments.	11
Figure 2	Pleural parts.	12
Figure 3	Pleural fissures.	13
Figure 4	Mediastinum.	15
Figure 5	(a) and (b) showing mediastinal lymphnodes mapping	17
Figure 6	Diaphragmatic aperatures .	19
Figure 7	Chest wall anatomy - rib cage.	20
Figure 8	MDCT demonstrates a focal parenchymal calcification	22
	in the right lung -the Ghon's focus with associated	
	right hilar nodal calcification; Ranke complex.	
Figure 9	Ranke complex. MDCT demonstrates in (a) densely	23
	calcified subpleural nodule with (b) calcified right	
	hilar lymph nodes which are a sequel of tuberculosis.	
Figure 10	Residual postprimary pulmonary tuberculosis. Axial	23
	MDCT shows calcified granulomatous nodules in the	
	left upper lobe (long arrows). Calcified nodules and	
	the sequel of parenchymal changes are also seen in the	
	right upper lobe (short arrows).	
Figure 11	Axial MDCT scans show multiple small calcific	24
	pulmonary nodules due to old healed histoplasmosis.	
Figure 12	(A) Coronal reconstruction MDCT showing multiple	24
	calcified lymph nodes. Subcarinal lymph nodes	
	(broncholith) protrude into the left main bronchus. (B)	
	Fiberoptic bronchoscopy showing a large broncholith	
71 10	in the left main bronchus.	
Figure 13	Hamartoma. (MDCT demonstrates a focal region of	25
	calcification -arrowed- within a well circumscribed	
T: 4.4	nodule of the left lung.	2.5
Figure 14	Hamartoma. An axial CT scan just above the hila	26
	shows a large central PN with popcorn calcification in	
T' 15	a hamartoma.	26
Figure 15	A blown-up image from a chest radiograph and axial	26
	CT scans showing low attenuation areas (arrow)	
	within the pulmonary nodule due to fat virtually	
Eigen 16	diagnostic of a hamartoma.	20
Figure 16	Squamous cell carcinoma. (MDCT demonstrates an	28
	inhomogenous mass in the left lower lobe. With	
	scattered foci of calcifications, the diagnosis was	

	established by the means of fine needle aspiration of	
Figure 17	the lung. A chest radiograph and axial CT scan shows a dense nidus of central calcification in an adenocarcinoma of the lung.	29
Figure 17	Axial CT scans show a pleural-based mass with underlying pleural calcification. A CT-guided biopsy revealed a small cell lung cancer.	29
Figure 19	Axial CT scan shows a central pulmonary carcinoid associated with dense amorphous calcification (arrow)	30
Figure 20	Bronchial carcinoid shown as dense nodule at the lower pole of the right hilum on the chest radiograph (arrow). On axial CT scans there is nonuniform density of the pulmonary nodule (white arrow), which revealed calcification on the resected specimen. Note the subsegmental atelectasis distal to the tumor (black arrow).	31
Figure 21	CT scans show multiple calcified metastases from a non-mucinous adenocarcinoma from sigmoid colon confirmed on CT guided needle biopsy.	32
Figure 22	Hydatid cysts do not normally calcify within the lungs; two calcified hydatid cysts in the superior and posterior mediastinum are seen. Note the calcified hydatid cyst within the left lobe of the liver on the coronal CT reconstruction	33
Figure 23	 (A): Chest X-ray bilateral infiltration and huge mass shadow with calcification. (B): MDCT chest scan reveals a huge mass at the left thorax; multiple calcifications are recognized at the periphery as well as relatively central lesions. With the heart, aorta and esophagus are displaced to the right. (C): an old chest X-ray for the same patient shows a mass on left lower field. The heart and mediastinum were not shifted. 	34
Figure 24	Silicosis. Axial MDCT at the mediastinal window shows multiple calcified nodules with a conglomerate mass.	36
Figure 25	Metastatic calcifications of the lungs in a patient with chornic renal failure.	37

Figure 26	Pulmonary alveolar microlithiasis. (a) Chest radiograph demonstrates diffuse calcification throughout both lungs with mild volume loss and tracheal deviation to the right. (b) MDCT demonstrates dense calcifications of lungs parenchymae.	39
Figure 27	Amyloidosis. (a) Chest radiograph and (b) MSCT demonstrate multipule large calcified lung masses.	40
Figure 28	Interstitial fibrosis with pulmonary ossification. (a)Axial CT obtained with soft tissue window demonstrates calcification in the subpleural areas. (b)Axial CT obtained with lung window demonstrates subpleural fibrosis.	42
Figure 29	MDCT demonstrates Pulmonary hamartoma. Popcorn calcifications (arrows) in this right lower lobe mass are suggestive of cartilaginous calcifications.	43
Figure 30	Progressive massive fibrosis. MDCT demonstrates: A-Eccenctrically calcified mass in the right lung. B-Ct scan obtained at lung window showing paracicatricial emphysema.	45
Figure 31	Bronchial carcinoid. (MDCT demonstrates eccentric calcification with a mass at the right lower lobe, calcification in bronchial carcinoid is seems to be due to an osteogenic factor produced by the tumor, which is most likely responsible for the sclerotic bone metastasis as well.	46
Figure 32	Metastatic osteogenic sarcoma. MDCT demonstrates dense eccentric calcification in a new nodule in a patient with extra-thoracic osteogenic sarcoma.	47
Figure 33	MDCT demonestrates adenocarcinoma with eccentric calcification.	47
Figure 34	Haemosiderosis due to mitral stenosis. MDCT demonstrates multifocal calcification within the pulmonary parenchyma.	48
Figure 35	Secondary hyperparathyroidism. MDCT demonstrates diffuse cloud-like metastatic calcifications and extensive soft tissue calcifications.	49
Figure 36	Metastatic pulmonary calcification. Axial MDCT scan image chest shows centrilobular ground-glass nodules	51

	and several small calcified nodules. The patient was known with chronic renal impairment and secondary	
	hyperparathyroidism.	
Figure 37	Asbestos exposure. MDCT demonstrates bilateral calcified pleural plaques –arrowed	54
Figure 38	MDCT demonstrates asbestosis related pleural plaques.	54
Figure 39	A chest radiograph and CT showing features of old healed TB. Note the loss of lung volume/fibrosis in the right upper zone and the associated pleural calcification due to a previous tuberculous empyema. Calcific granulomas are also noted in the left apical region.	55
Figure 40	Multiple calcified pleural plaques mimicking pulmonary nodules on a chest radiographs elegantly depicted on axial CT scan as calcified pleural plaques from previous asbestos exposure.	56
Figure 41	Asbestos exposure. MDCT demonstrates pleural plaques with calcification.	57
Figure 42	Biopsy-proved sarcoidosis in a 41-year-old man. MDCT (a) obtained at a higher level than (b) demonstrate focal nodal calcification in the mediastinum and right hilum.	58
Figure 43	MDCT demonstrates Bilateral lymph node calcifications in sarcoidosis.	59
Figure 44	Lymph node calcification. Axial CT shows right paratracheal calcified lymph nodes secondary to tuberculosis (arrow).	59
Figure 45	Eggshell calcification. MDCT demonestrates egg-shell calcification of mediastinal and hilar lymph nodes (arrows) in a patient with silicosis.	61
Figure 46	Node calcification in sarcoidosis is shown. Axial CT scan shows typical eggshell calcification (arrows). Presence of node calcification suggests chronic condition.	61
Figure 47	MDCT demonstrates Mediastinal adenopathy with calcifications in this patient with Hodgkin's lymphoma.	63
Figure 48	MDCT scans can detect coronary artery calcium	64

	(arrowhead).	
Figure 49	Coronal maximum intensity projection CT image showing widespread calcification of tracheal and bronchial cartilaginous rings extending into the segmental bronchi.	66
Figure 50	Typical CT appearance of an anterior chest wall chondrosarcoma arising from the chondrosternal junction, demonstrating prominent chondroid matrix mineralization resulting in a characteristic flocculent or "popcorn" pattern of calcification	67
Figure 51	Non-enhanced chest CT scan in a patient with history of trauma demonstrates a soft tissue mass with discrete central ossification/calcification at his lateral chest wall suggesting the diagnosis of myositis ossifican.	69
Figure 52	Showing the anatomical site of the calcification.	76
Figure 53	Showing types of calcified lung lesions.	77
Figure 54	Showing types of calcified mediastinum lesions.	80
Figure 55	Showing types of cardiac calcification.	82
Figure 56	Showing types of vascular calcification.	83
Figure 57	Showing types of airway calcification.	84
Figure 58	Showing calcified lymph nodes type, site and pattern.	85
Figure 59	Showing calcified chest wall lesions.	88

Introduction

Intrathoracic calcifications occur in a wide variety of disorders. Although they are usually harmless sequel of remote processes, calcifications provide an important information for establishing the diagnosis and evaluating the progression of a known disease. They may arise in the pulmonary parenchyma, mediastinum, hilar and mediastinal lymph nodes, pleura, heart, mediastinal vessels and chest wall, or any combination of these structures. The cause of calcifications may be determined by means of the location and pattern within the lung parenchyma and knowledge of the associated clinical features. The clinical manifestations of pulmonary calcifications are usually minimal but occasionally may cause dyspnea. Therefore, they are rarely diagnosed because of their benign clinical course. No correlation is found between the extent of macroscopic calcifications and the clinical symptomatology; massive calcifications can be completely asymptomatic. Calcifications in the thorax are frequently manifestations of previous infectious process, occupational exposure, or previous medical therapy. MDCT is the most sensitive radiological method for detection in differences in radiologic density in chest lesions (Wang et al., 2010).

Areas of high attenuation (visually seen as dense as bony structures) in an abnormality on CT scan can be an important clue to the correct diagnosis. The attenuation is mostly caused by calcification, but may also be due to other causes like, iodine barium, or radio-opaque foreign body (Camey et al., 2005).

Aim Of The Study

The objective of conducting this research was to detect the role of MDCT in localizing and diagnosis of different calcified chest lesions of different structures.

Chest Anatomy

I-LUNGS:

The two lungs are similar; they are not completely symmetrical, having a different number of lobes and a different bronchial and vascular anatomy (*Webb et al.*, 2009).

The left lung: is subdivided into two lobes and thereby, into eight segments: (see fig. 1).

- Left upper lobe: Left upper lobe proper: apicoposterior, anterior segments.
- Lingula: superior lingular, inferior lingular segments.

left lower lobe: superior segment or apical segment, and inferior segment or basal segment, which is further subdivided into: anteromedial segment, lateral segment, and posterior segment (*Webb et al.*, 2009).

The right lung is subdivided into three lobes with ten segments: (see fig. 1)

- right upper lobe: apical segment, anterior segment, and posterior segment.
- right middle lobe: medial segment, and lateral segment.

right lower lobe: superior segment or apical segment, and inferior segment or basal which further subdivided into: anterior segment, medial segment, lateral segment, &posterior segment(*Webb et al.*, 2009).

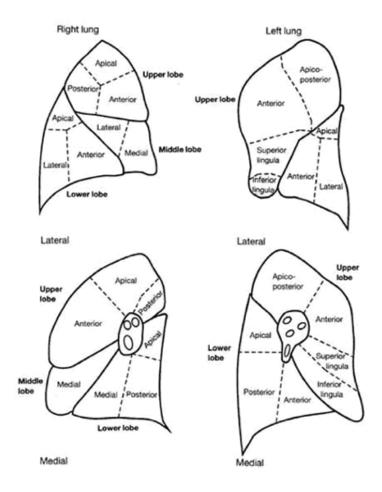


Fig. 1: Lung segments (Webb et al., 2009).

II-Pleura:

The pleura is divided into: (see fig. 2)

• Visceral pleura: which covers the surface of the lung and dips into the fissures between its lobes.