Optimization of patient dose and image quality for Computed tomography examination

Presented by

Fatma mostafa mohamed said.

A Thesis Submitted
To
Faculty of Science

In Partial Fulfillment of the Requirements for The Degree of Master of Science (Radiation physics)

Physics Department
Faculty of Science
Ain – Shams University

Optimization of patient dose and image quality for Computed tomography examination

Thesis submitted in partial fulfillment of the requirements for the

Degree of Master of Science in the

Physics Department, Faculty of science, Ain Shams

University

 $\mathbf{B}\mathbf{y}$

Fatma mostafa mohamed said

B.Sc. 2016

Optimization of patient dose and image quality for Computed tomography examination

Student Name : fatma mostafa mohamed

<u>Degree</u> : master of Science

<u>Department</u>: Physics

Faculty : Science

<u>University</u>: Ain Shams

Graduation Date : 2007

Registration Date: 2016

APROVAL SHEET FOR SUBMISSION

Thesis Title:

Optimization of patient dose and image quality for Computed tomography examination.

Name of candidate: fatma mostafa mohamed.

<u>Degree:</u> Master of Science

Department: Radiation Physics

This thesis has been approved for submission by the supervisors:

1- Prof. Dr. Samir Youshaa El-Khamisy, Physics Department, Faculty of Science, Ain Shams University.

Signature:

1- Dr. Hassan Shafeik Abouelenein, Consultant of medical physics, Children's Cancer 57357 Hospital-Egypt.

Signature:

2- Dr. Dina Salah, Physics Department, Faculty of Science, Ain Shams University.

Signature:

(2019)

Acknowledgments

First of all, I Should articulates my extremely grand indebtedness to ALLAH the merciful whom prosperity and succor accompanied me for this work.

I would like to express my thanks to Trof. Dr. Samir Ushah EL-Khamisy — Thysics Department — Faculty of Science, Ain Shams University for his encouragement, continuous supervision, kindness, guidance and reassuring advice throughout the present work and for his continuous assistance.

I would like to express my gratitude to Dr. Hassan Shafeik Abouelenein Medical physics, Radiotherapy and Nuclear Medicine Department, children cancer hospital for his guidance and supervision throughout the present work.

I would like to thank Dr. Dina Salah—Thysics Department — Faculty of Science, Ain Shams University, for his support and guidance during this thesis work.

Many thanks to all my friends, for their helpful remarks and for giving me confidence.

Last, but by no means least, I need and desire to thank to my family for here extremely support and my lovely son and daughter.

List Of Contents

Subject	Page
Acknowledgment	
Contents	i – iii
List of figures	iv - vi
List of tables	vii
Abstract	1 - 2
Summary	3
CHAPTER (1): INTRODUCTION	
1.1. Introduction	5
1.2. History and Generations	6-
1.3. C T Instrumentation	10
1.3.1. The gentry	11
1.3.1.1. X-ray tube	11
1.3.1.2. Detector	11
1.3.1.3. Filtration and collimation	14
1.3.1.4. Generation	16
	18
CHAPTER (2): LITERATURE REVIEW	

Subject	Page
2. Literature Review	
CHAPTER (3): THEORETICAL ASPECTS	
3.1. X-ray production	33
3.1.1. Bremsstrahlung	33
3.1.2. Characteristic X-ray	34
3.2. X-ray interactions	35
3.2.1. Photoelectric effect	36
3.2.1. Compton effect	37
3.3. C T dosimetry	37
3.3.1. Computed Tomography dose index	38
3.3.2. The weight computed tomography dose index	38
3.3.3. The volume computed tomography dose index	39
3.3.4. Dose length product	39
3.4. Units associated with radiation production	40
3.4.1. Absorbed dose	40
3.4.2. Equivalent dose	40
3.4.3. Effective dose	41
CHAPTER (4): MATERIALS AND METHOD	

Subject	Page
4.1. Materials	44
4.1.1. Computerized Tomography(C T)	45
4.1.2. Head and body phantom	46
4.1.3. Dosimetry system	47
4.1.3.1. Ionization system	48
4.1.3.2. Electrometer	50
4.1.4. Water phantom	50
4.4. Method	53
CHAPTER (5): RESULTS AND DISCUSSION	
5.1. Head examination	58
5.2. Abdomen examination	63
5.3. Radiation dose	70
5.4. Image quality	72
CHAPTER (6): CONCLUSION	93
<u>REFERENCES</u>	96- 106
Published Paper	1.7
Arabic Summary	۱-ب

List of Figure

	Page
Figure 1.1: The four generation of C T scanners.	8
Figure 1.2: Electron beam C T, also known fifth generation.	9
Figure 1.3: Scanning geometry in helical (spiral) CT.	10
Figure 1.4: Basic scanning systems for computerized tomography.	11
Figure 1.5: Rotating-anode diagnostic X-ray tube	12
Figure 1.6: (A) Siemens X-ray tube, (B) Schematic diagram, showing the whole anode system	13
Figure 1.7: Schematic diagram of a scintillation detector.	15
Figure 1.8 : Gas filled detector, which consists cylinder chamber containing a gas filled (air CO ₂)	16
Figure 1.9: Filter used to remove low energy X-ray photons.	17
Figure 1.10: The total filtration (inherent filtration and the added filtration)	17
$ \textbf{Figure 3.1:} \ \textbf{Bremsstrahlung phenomenon in the production of } X \text{ -ray} $	34
Figure 3.2: The intensity of characteristic X-ray	35
Figure 3.3: Photon interaction with bound electron	36
Figure 3.4: Photon interacts with free electron	37
Figure 4.1: PMMA cylindrical head and Body phantom and ion chamber	47
Figure 4.2: Ionization chamber PTW type 3009	49
Figure 4.3: Electrometer PTW model DIADOS E	50
Figure 4.4: QC phantom adjusted on Toshiba scanner	51
Figure 4.5: Body phantom and electrometer adjusted on CT.	53
Figure 4.6: Image of body phantom at 100 kv.	54

List Of Figure

	Page
Figure 4.7: The image of water phantom.	55
Figure 5.1: CTDI values in mGy for head phantom at different CT scanners with 80 kVp and different mAs protocols	60
Figure 5.2: CTDI values in mGy for head phantom at different CT scanners with 100 kVp and different mAs protocols	61
Figure 5.3: CTDI values in mGy for head phantom at different CT scanners with 120 kVp and different mAs protocols	63
Figure 5.4: CTDI values in mGy for head phantom at different CT scanners with 80 kVp and different mAs protocols	64
Figure 5.5: CTDI values in mGy for abdomen phantom at different CT scanners with 100 kVp and different mAs protocols	66
Figure 5.6: CTDI values in mGy for abdomen phantom at different CT scanners with 120 kVp and different mAs protocols	86 69
Figure 5.7: CTDIvol (mGy) in head phantom at 100 kVp and 50mAs	

List of Table

	Page
Table 3.1: Radiation weighting factor (W _R) recommended by the NCRP	41
Table 3.2: Values of k at different regions of body	42
Table 4.1: CT scanners Specifications	45
Table 4.2: The characteristics of head and body phantom <i>used</i> in this work.	47
Table 4.3: The characteristics of cylindrical ionization chamber.	49
Table 5.1: CTDIvol (mGy) measured and CTDIvol (mGy) recorded at kVp=80 and different mAs for head scan	59
Table 5.2: CTDIvol (mGy) measured and CTDIvol (mGy) recorded at kVp=100 and different mAs for head scan	60
Table 5.3: CTDIvol (mGy) measured and CTDIvol (mGy) recorded at kVp=120 and different mAs for head scan	62
Table 5.4: CTDIvol (mGy) measured and CTDIvol (mGy) recorded at kVp=80 and different mAs for abdomen scan	63
Table 5.5: CTDIvol (mGy) measured and CTDIvol (mGy) Recorded at kVp=100 and different mAs for abdomen scan	
Table 5.6: CTDIvol (mGy) measured and CTDIvol (mGy) Recorded at kVp=120 and different mAs for abdomen scan	65
Table 5.7: Average Effective dose E (mSv) and average DLP (mGy.cm) at 100, 120 kV and for various mA	70
Table 5.8: Means values of CTDI and DLP to previously published data.	71
Table 5.9: Uniformity measurements by mean values at kV=80,100 and 120 with mA equal 50, 10,150,200 and 250 to CT scanner.	74
Table 5.10: Noise measurements by standard deviation at kV=80,100 and 120 with mA equal 50, 10,150,200 and 250 to CT scanner.	75

Abstract

Computed tomography (CT) represents nowadays a very essential and precise tool to define exactly the different kinds of tumors and make detailed pictures of parts of the body taking into consideration that Computed tomography (CT) delivers substantially radiation dose and risk of cancer than alternative imaging methodologies, particularly in children. In the United States, of approximately 600,000 abdominal and head CT examinations annually performed in children under the age of 15 years, a rough estimate is that 500 of these individuals might ultimately die from cancer attributed to the CT radiation.

There are two purpose of this survey; the first was determination of patient dose by using ionization chambers, the second is to measure the degree of accuracy image quality for each protocol. Estimation of the best protocols that can be used in diagnostic centers according to the international CT dose a limit which does not affect the image quality.

The standard head and body phantom in combination with longitudinal ionization chamber dedicated for CT dose were used to measure the computed tomography dose index (CTDI) and dose length product (DLP) for the selected protocols. The X-ray tube potential range 80,100and 120 kVp, time - current tube range 50 to 250 mAs and the scan mode utilized for the measurements is the helical scan.

Our results reveals that there is a good matching between the values of CTDIvol data obtained from the CT scanner and the measured value, within the range from 4 % to 11 %. The CTDIvol for head scan were varied from 3.1 to 35.1 mGy, from 4 to 51.9 mGy and from 5.6 mGy to 73.8 mGy at 80, 100 kVp and 120 kVp respectively at various mAs. For abdomen scan the CTDIvol were varied from 0.8

mGy to 18.7 mGy, from 1.3 to 30.1 and from 1.3 mGy to 51.3 mGy at 80, 100 kVp and 120 kVp respectively at various mAs.

The DLP for head scan were varied from 52.9mGy.cm to 295.6mGy.cm and from 88.7mGy.cm to 459.9mGy.cm at 100 kVp and 120 kVp respectively at various mAs. The DLP vary from 28.9mGy.cm to 149.2mGy.cm and from 48.6mGy.cm to 256.6mGy.cm at 100 kVp and 120 kVp respectively at various mAs for body scan.

If the tube voltage decreased from 120 to 100 kVp at constant tube current, the dose reduced by factor 20% to 50% without pronounced effect on the image.

The present work highlights the need for national studies to understand how the clinical CT factors contribute to variation in dose and assess the relationship between image quality and radiation dose. There is an urgent need to determine the optimum dose for each type of examination that balances image quality, with keeping the dose as low as possible. The effective dose calculated using the scanner-provided DLP measurement can be used as an easy starting point to begin to record patient-level exposure. Similarly, a simple method can be used to estimate the risk of cancer.

Summary

The standard head and body phantom in combination with longitudinal ionization chamber dedicated for CT dose were used to measure the computed tomography dose index (CTDI) and dose length product (DLP) for selected protocols at different scan parameters .

Fifteen computed tomography scanners were chosen to involve in this study. The x-ray tube potential range is from 80 to 120 kVp, time - current tube range is from 50 to 250 mAs and the scan mode utilized for the Multi-slice helical scan at two CT examination (Routine Head and Routine Abdomen).

Evaluation of the volume C T dose index (CTDI $_{VOL}$) and the Dose – Length product (DLP) at different physical parameters (kVp – mAs) and perform quality control tests for CT scanners. Compare between the values of CTDL $_{VOL}$ which measured by electrometer and recorded by operator's console.

Comparison step between our measured verification data which is taken by ionization chamber and data obtained from the CT scanner, within the range from 4 % to 11 %. For head scan, the average effective dose was ranged from 0.11mSv to 0.96 mSv with an average 0.46 mSv, and the corresponding attributable risk of cancer was 0.0026 cancers per 10,000 patients (ranged from 0.0006 to 0.005 cancers per 10,000 patients). For body scan, the effective dose was ranged from 0.43 mSv to 3.85 mSv with an average 1.81 mSv, and the corresponding attributable risk of cancer was 0.01 cancers per 1000 patients (ranged from 0.00243 to 0.021 cancers per 1000 patients). If the tube voltage decreased from 120 to 100 kVp at constant tube current, the dose reduced by factor 20% to 50% with acceptable image quality

The radiation exposure associated with CT has increased substantially over the past two decades, and efforts need to be undertaken to minimize radiation exposure from CT, including reducing unnecessary examinations, reducing the dose per study, and reducing the variation in dose across patients and facilities. Patient outcomes studies are needed to highlight the benefits expected from the examinations and reducing or preventing the associated health risk. Understanding exposures to medical radiation delivered through actual clinical studies is a crucial first step toward developing reasonable strategies to minimize unnecessary exposures.