صفاء أبه السعود محمد

شبكة المعلومات الجامعية

بسم الله الرحمن الرحيم

-C-10-3-

ASUNET

شبكة المعله مات الجامعية

صفاء أبو السعود محمد

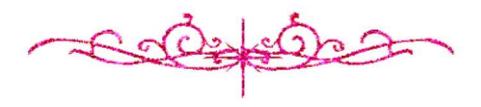
شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

صفاء ابو السعود محمد

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم


قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

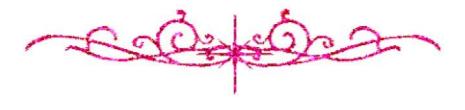
يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

المالية المالية

شبكة المعله مات الجامعية

صفاء أبه السعود محمد


ASUNET

شبكة المعله مات الجامعية

صفاء أبه السعود محمد

بالرسالة صفحات لم ترد بالأصل

EFFECT OF HEAT STRESS AND FLOCK DENSITY ON PHYSIOLOGICAL AND IMMUNOLOGICAL RESPONSES OF BROILERS

By

Nabiha Hussein Abdel Mutaal

B. Sc. Agric. (Animal Production) Cairo Univ., 1970M. Sc. Agric. (Animal Breeding) Cairo Univ., 1977

Thesis

Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

In

Agriculture Science (Poultry Physiology)

Animal Production Department
Faculty of Agriculture
Cairo University

APPROVAL SHEET

EFFECT OF HEAT STRESS AND FLOCK DENSITY ON PHSIOLOGICAL AND IMMUNOLOGICAL RESPONSES OF BROILERS

Nabiha Hussein Abdel Mutaal

B. Sc., Agric. Fac. (Animal production) Cairo Univ., 1970 M. Sc., Agric., Fac. Of Agric., Cairo Univ., 1977

This thesis for the Ph.D. degree had been approved by:

Prof. Dr. Ahmed Abo El-Soud Radwan. A. A. Recolments

Dr. Shoukry M.T. Tantawy. Shaudtry. El-Tantawy

Committee in charge Date: 17/11/2003

SUPERVISED BY

Prof. Dr. Nagwa Abdel Hadi Ahmed

Prof. of Poultry Physiology- Facultry of Agriculture-Cairo University.

Dr. Ahmed Abd El-Latif El-Far

Lecturer of Poultry Physiology - Faculty of Agriculture - Cairo University.

Prof. Dr. Fadia Mamoud Nossier

Prof. of Poultry Physiology - Animal Production Research Institute - Poultry Breeding Department - Agriculture Research Center.

APPROVED BY

Prof. Dr. Ahmed Abo El-Soud Radwan.

Professor of Poultry Physiology, Animal Production Department, Faculty of Agriculture, Moshtohor, Zagazig University.

Dr. Shokry M. T. El-Tantawy.

Assistant Prof. of Poultry Physiology, Animal Production Department, Faculty of Agriculture, Cairo University.

Prof. Dr. Nagwa Abdel Hadi Ahmed

Professor of Poultry Physiology, Animal Production Department, Facultry of Agriculture, Cairo University. Name of Candidate: Nabiha Hussein Abd El Mutaal Degree: Ph.D.

Title of Thesis: Effect of heat stress and flock density on physiological and immunological responses of broilers

Supervisors: Prof. Dr. Nagwa Abdel Hadi & Dr. Ahmed El Far & Prof. Dr. Fadia Mahmoud Nossier

Department: Animal production Branch: Poultry production

ABSTRACT

This work was carried out on 385 days old commercial Arbor-Acres broiler chicks. This study included: field research carried out at the poultry research center, Animal Production Department, Faculty of Agriculture, Cairo University.

The study aimed to investigate the effects of early heat stress, flock density and heat + density on physiological, immunological and productive performance of broiler chickens raised under Egyptian environmental conditions.

The study included three experiments:

- 1. Early heat exposure:
- 1. 71chicks, 3 days old chicks were exposed to heat stress at (42-43°C) for 4 hrs then moved to normal brooding temperature (1st group).
- 2. Another 96chicks, 5 days old chicks were treated as in the first group (2nd group).
- 3. 68 chicks were kept at normal brooding temperature (control).
- 4. At 8 weeks of age, 30 birds from each of the three mentioned groups were heat challenged at 42-43 °C for 3 hrs.

II. Flock density studies:

150 chicks, 4 weeks old were divided into three equal groups and kept up to 8 weeks under three different densities:

- 1. Control group 12 birds/m2.
- 2. Low density 9 birds/m².
- 3. High density 15 birds/m2.

III. Heat stress and flock density:

Twenty two 8 weeks old chicks from each density group were exposed to heat stress (38°C for 2 hrs).

Results:

The most important results obtained are:

- i. Early heat exposure:
- 1. 3 days early heat exposed group had the lowest rectal temperature.
- Broilers heat stressed at 3 days had significantly (P≤0.05) higher respiration rates.
- 3. Before heat challenge at 8 weeks of age, birds acclimated at 3 days had the highest total plasma protein, albumin and globulin concentrations.
- 4. Heat acclimation at 3 days resulted in significant decrease in broilers sodium while plasma potassium significantly increased in 3 or 5 days acclimated group.
- 5. Birds acclimated early in life (at 3 days) had the lowest plasma T_3 content.
- 6. Significantly increased plasma corticosterone concentration after heat stress was observed in all studied groups. Heat acclimated group had the most increase.
- Early heat acclimated birds at 3 or 5 days had significantly higher antibody titre than the control group.
- 8. Early heat acclimation at 3 or 5 days of age significantly lowered mortality rate.
- II. Flock density studies:
- 1. Rectal temperature and respiration rate of birds raised under high density conditioned were significantly higher than that of birds reared at normal and low density groups.
- 2. A tendency to higher plasma T₃ with decreasing density, whereas corticosterone showed tendency to higher concentration with increasing density.
- 3. Rearing broilers under high density conditions significantly lowered antibody production value.
- 4. Broilers raised under crowding density had significantly the least body weight.
- 5. High density group had the highest mortality rate.

III. Heat stress and density studies:

- 1. Low density followed by heat stress significantly reduced rectal temperature and respiration rate.
- 2. Heat and his caused a decreased T₃ and increased corticosterone levels.
- 3. Birds of high density group had significantly lower antibody SRBC titre.

Nagur

F-L-far

First of all

Thanks to AllA

the compassionate and the most merciful who enabled me to conduct this work

ACKNOWLEDGMENT

I wish to express my deep gratitude to **Prof. Dr. Nagwa A. Ahmed**, Professor of Poultry Physiology. Department of Animal Production, Faculty of Agriculture, Cairo University, for suggesting the problem, her supervision, guidance, encouragement, planning, and continuous interest throughout the study.

I am also indebted to **Dr. Ahmed A. EI-Far**, Lecturer of Poultry Physiology, for his suggestions, guidance, assistance, and participation in carrying out the immunological measurements and for his continuous interest throughout the study.

My cordial thanks and appreciation to **Prof. Dr. Fadia M. Nossier**, Professor of Poultry Physiology, Animal Production Research Institute, Ministry of Agriculture, for her close supervision, unlimited help, enthusiasm, encouragement, and constant interest.

I would like to express my sincerely felt gratitude to M. Sc., Ali Saber Morsy, Research Assistant of Animal Production, Desert Research Center.

My cordial thanks go to **Miss Iman A. Soro**ur. Research Assistant of Animal Physiology, Animal Production Research Institute, Ministry of Agriculture, for her precious help.

Great thanks to **Mr. Ahmed Kamel**, Poultry Physiology Laboratory, for his sincere help during this work.

I would also like to thank all the members of <u>Animal Production</u> Research Institute and the members of Animal Breeding, Poultry Breeding Department, Animal Production Research Institute, for their cooperation, kind help, and valuable assistance during this work.

My thanks are also extended to the staff members of the **Department of Animal production**, Faculty of Agriculture, Cairo University, for their helpful cooperation which made this investigation possible.

Cordial thanks are extended to my beloved family for their patience, support, and sincere help.

CONTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	3
I. Heat stress	3
1. Effect of heat stress on physiological responses	3
1.1. Thermal reaction	3
A. Rectal temperature	3
B. Respiration rate	10
1.2. Effect of heat stress on some blood constituents	15
1.2.1.Metabolites	15
A. Plasma total protein	15
B. Plasma albumin and globulin	18
C. Plasma total lipids	19
D. Plasma total sodium and potassium	19
1.2.2. Hormonal assay	21
A. Plasma Triiodothyronine (T ₃)	21
B. Plasma corticosterone	26
C. Adrenocortical-thyroid interactions	29
Avian immune system	30
A. Bird's lymphotic system	30
1. Primary lymphoid organs	31
a. Bursa of fabricius	31
b. Thymus gland	31
2. Secondary lympoid organs	32
a. Lymph nodes	32
b. Spleen	32
c. Harderian gland (HG)	33
3 Immune cells	33

	Page
a. Macrophages, Natural killer cells, Heterophils	34
b. Types of immune response	35
2. Effect of heat stress on immunological reaction	35
2.1. Heterophils/lymphocytes (H/L) ratio	36
2.2. Antibody production against sheep red blood cells (SRBC)	38
2.3. Heat stress-endocrine immune interactions (adrenals and	
immune system)	41
3. Effect of heat stress on productive performance	44
3.1. Body weight	44
3.2. Daily gain and growth rate	47
3.3. Liver and heart relative weight	48
3.4. Carcass chemical composition	51
3.5. Mortality rate	58
II. Flock density	62
1. Effect of flock density on immunological reactions	62
1.1. Heterophils: lymphocytes (H/L) ratio	63
1.2. Antibody production against sheep red blood cells	
(SRBC)	65
1.3. Lymphoid organs weight	65
A. Bursa of fabricius	66
B. Spleen	67
2. Effect of flock density on productive performance	67
2.1. Body weight and growth rate	67
2.2. Mortality rate	70
III. Multistressors	72
- Effect of heat stress and flock density on broilers performance	72

	Page
MATERIALS AND METHODS	75
RESULTS & DISCUSSION	86
Experiment I. Heat stress	86
1. Effect of early heat exposure on physiological responses	86
1.1. Thermal reactions	86
A. Rectal temperature	86
B. Respiration rate	90
1.2. Effect of early heat exposure on some blood constituents	93
1.2.1. Metabolites	93
A. Plasma total protein	93
B. Plasma albumin and globulin	97
C. Plasma total lipids	101
D. Plasma sodium and potassium	103
1.2.2. Hormonal assay	108
A. Plasma triiodothyronine	108
B. Plasma corticosterone	114
2. Effect of early heat exposure on immunological reactions	118
2.1. Heterophils: lymphocytes (H L) ratio	118
2.2. Antibody production against sheep red blood cells (SRBC)	121
2.3. Bursal and spleen relative weight (mg/100 g BW)	125
3. Effect of early heat exposure on productive performance	129
3.1. Body weight	129
3.2. Daily gain and growth rate	134
3.3. Liver and heart relative weight (mg/100 body weight)	140
3.4. Carcass chemical composition	143
3.5 Mortality rate	147