Factors Contributing to Acquired Muscle Weakness Among Critical III Patients

Thesis

Submitted for Partial Fulfillment of Master Degree in Nursing Science (Critical Care Nursing)

By

Mona Abd Elaty Atea Mohamed

Demonstrator of Medical Surgical Nursing

Faculty of Nursing

Beni-sueif University

Faculty of Nursing
Ain Shams University
2019

Factors Contributing to Acquired Muscle Weakness Among Critical III Patients

Thesis

Submitted for Partial Fulfillment of Master Degree in Nursing Science (Critical Care Nursing)

Supervised By

Prof. Dr. / Manal Salah Hassan

Professor of Medical Surgical Nursing Faculty of Nursing Ain-Shams University

Dr/ Zeinab Hussein Bakr

Lecturer of Medical Surgical Nursing
Faculty of Nursing Ain- Shams University

Dr/ Eman Fathy Amr

Lecturer of Medical Surgical Nursing
Faculty of Nursing-Beni-Suef University

Faculty of Nursing
Ain Shams University
2019

سورة التوبة الآية ٥٠١

First and foremost I am grateful to AIIAH for giving me the opportunity to complete this study, and give Him thanks and praise. My special thanks and gratitude to Dr. Manal Salah Hassan Professor of Medical Surgical Nursing, Faculty of Nursing, Ain Shams University I am deeply grateful to her guidance, constructive criticism, keen supervision, encouragement and continuous support. I would like to address my great appreciation and thanks to Dr. Zeinab Hussien Bakr Jecturer of Medical Surgical Nursing, Faculty of Nursing, Ain Sham University and Dr. Eman Fathy Amr Jecturer of Medical Surgical Nursing, Faculty of Nursing, Beni-Suef University for all their support, guidance, their close supervision, critical comments and careful revision of the work helped much in its achievement. Finally, I would like to thank all members of my family and unknown solider for continuous support and assistance in every step in the journey of my life.

Candidate

Mona Abdelaty Atea

Abstract

Intensive Care Unit Acquired Muscle Weakness (ICU-AW) is one of the most important complications occurs in the ICU. It is a multifactorial syndrome characterized by generalized muscle weakness. Critical Care Nurses (CCNs) have an important role in the prevention of ICU-AW through increase mobility and applying of range of motion (ROM) exercise. Aim: This study aimed to assess factors contributing to acquired muscle weakness among critical ill patients. **Design:** A descriptive explorative design was utilized for the conduction of this study. Setting: the study was carried out in intensive care units (ICUs) of Beni-Suef University Hospital (general, chest and internal medicine ICU). Study subject: A Purposive sample of seventy five patients admitted to the previous mentioned setting. Tools of data collection were consisted of patient assessment tool, muscle strength scale /medical research council (MRC) and indicators to incidence of ICU-AW, and factors contributing to ICU-AW assessment tool. **Results:** revealed that, more than half of studied patients had ICU-AW, the majority of studied patients who had muscle weakness were older than the Non ICU-AW patients. Application of positioning and range of motion exercises were not done in the ICU-AW patients. Administration of corticosteroid and incidence of malnutrition was higher in the ICU-AW patients than the Non ICU-AW patients. There were no statistically significant relation between incidence of ICU-AW and gender, admission medical diagnosis, administration of parenteral nutrition and application of positioning, and walking exercises. Conclusion: More than half of studied patients developed ICU-AW. The contributing factors of ICU-AW are patient age, WBCs level, no applying range of motion and chair sitting exercise to ICU corticosteroid administration of and malnutrition. patients, **Recommendations:** Further research is recommended to study extensively the effect of nutritional status on incidence of ICU-AW. Also, examine the incidence of ICU-AW in sedated and unconscious patients.

Keywords: Intensive Care Unit, Acquired Muscle Weakness, Critical Care Unit.

List of Contents

Title Page No.
List of Tables I
List of FiguresV
List of AppendicesVI
List of AbbreviationsVII
Introduction
Aim of the Study6
Review of Literature
• Critical Illness and Intensive Care Unit Acquired Muscle
Weakness7
Factors Contributing to Intensive Care Unit Acquired Muscle
Weakness
Management of Intensive Care Unit Acquired Muscle
Weakness
Medical Management
Nursing Management of ICU-AW
Subjects and Methods
Results71
Discussion
Conclusion
Recommendation
Summary
References
Appendices
Protocol
Arabic Summary

List of Tables

Table No	Title		
1	Frequency distribution of studied patients	72	
	regarding demographic characteristics.		
2	Frequency distribution of studied patients		
	according to their admission medical	75	
	diagnosis.		
3	Frequency distribution of studied patients		
	according to their past medical and surgical	76	
	history.		
4	Frequency distribution of studied patients		
	according to their lab investigations.	77	
5	Distribution of patients with acquired		
	muscle weakness according to the day of	80	
	occurrence.		
6	Frequency distribution of procedures related		
	factors application contributing to Intensive		
	Care Unit Acquired Muscle Weakness	81	
	among studied patients.		
7	Frequency distribution of drug and		
	nutritional related factors contributing to	0.0	
	Intensive Care Unit Acquired Muscle	82	
	Weakness among studied patients.		
8	Relation between demographic		
	characteristics of studied patients and		
	incidence of Intensive Care Unit Acquired	83	
	Muscle Weakness.		

Table No	Title	
9	Relation between admission medical diagnosis of studied patients and incidence of Intensive Care Unit Acquired Muscle Weakness.	85
10	Relation between lab investigations of studied patients and incidence of Intensive Care Unit Acquired Muscle Weakness.	86
11	Relation between applications of procedures related factors contributing to muscle weakness and incidence of Intensive Care Unit Acquired Muscle Weakness among studied patients.	87
12	Relation between drug and nutritional related factors contributing to muscle weakness and incidence of Intensive Care Unit Acquired Muscle Weakness among studied patients.	88

List of Figures

Fig.	Title	Page	
Figures of literature review			
1	Pathophysiology of ICU-AW	12	
2	Assessment of muscle strength using		
	handgrip dynamometer	16	
3	Risk Factors of ICU-AW	32	
4	Cycle Ergometer	38	
	Figures of results		
1	Frequency distribution of studied patients	74	
	according to type of Patient Intensive		
	Care Unit.		
2	Frequency distribution of studied patients		
	according to incidence of Intensive Care	78	
	Unit Acquired Muscle Weakness.		
3	Muscle strength score among patients		
	with and without Intensive Care Unit	79	
	Acquired Muscle Weakness.		
	Figures of tools validity and reliability		
1	Job title of the expertise regarding face		
	and content validity of the study tools.	1	

List of Appendices

Appendix N	Title of appendix
Appendix (I)	Patient assessment tool.
Appendix (II)	Muscle Strength Scale/ Medical Research
	Council (MRC) and Indicators to incidence
	of ICU-AW.
Appendix (III)	Factors contributing to ICU Acquired Muscle
	Weakness assessment tool.
Appendix (IV)	Tools validity and reliability.
Appendix (V)	Protocol.
Appendix (VI)	Arabic Summary.

List of Abbreviations

Abb. Full Term.

ADLs : Activities of Daily Living

ARDS : Acute Respiratory Distress Syndrome

AROM : Active Range of Motion

ATP : Adenosine Triphosphate

BEE : Basal Energy Expenditure

BMD : Bone Mass Density

BMI : Body Mass Index

CAI : Catheter Associated Infections

CCNs : Critical Care Nurses

CIM : Critical Illness Myopathy

CINM : Critical Illness Neuromyopathy

CIP : Critical Illness Polyneuropathy

CIPNM: Critical Illness Polyneuromyopathy

CK : Creatine Kinase

CM : Centimeter

CMAP : Compound Muscle Action Potential

COPD : Chronic Obstructive Pulmonary Disease

DNA : Deoxyribonucleic Acid

DVT : Deep Venous Thrombosis

EMG : Electromyography

EMS : Electrical Muscle Stimulation

EN : Enteral Nutrition

EPS : Electrophysiological Study

Tist of Abbreviations 🕏

ESR : Erythrocyte Sedimentation Rate

GABA : γ-Amino Butyric Acid

Hrs : Hours

HS : Highly Significant

ICU: Intensive Care Unit

ICUAP : Intensive Care Unit Acquired Paresis

ICU-AW: Intensive Care Unit Acquired Weakness

IGF-1 : Insulin like Growth Factor 1

IV : Intravenous

Kcal: Kilocalorie

Kg: Kilogram

KSA : Kingdom of Saudi Arabia

LOS : Length of Stay

M : Minute

ML : Millimeter

MOF : Multiple Organ Failure

MRC : Medical Research Council

mTOR : Mammalian Target of Rapamycin

N : Number

NCS : Nerve Conduction Studies

NMBAs : Neuromuscular Blocking Agents

NMDA: N-Methyl-D-Aspartate receptors

NR : Nutritional Requirements

NS : No Significance

PCV: Pressure Controlled Ventilation

Tist of Abbreviations 🕏

PICS: Post Intensive Care Syndrome

PMV: Pressure Mechanical Ventilator

PROM : Passive Range of Motion

RBCs : Red blood cells

ROM : Range of Motion

S : Significant

SaO2 : Saturation of Oxygen

SD : Standard Deviation

SIRS : Systemic Inflammatory Response Syndrome

SRMD: Stress Related Mucosal Disease

UK : United Kingdom

UPS : Ubiquitin Proteasome System

USA : United State of America

VAP : Ventilator Associated Pneumonia

V/S : Vital Signs

VTD : Venous Thromboembolic Disease

WBCs: White Blood Cells

WOCN: Wound, Ostomy & Continence Nurses

Introduction

Intensive Care Unit Acquired Muscle Weakness (ICU-AW) is one detrimental effect of critical illness on physical function. This term refers to a wide variety of disorders characterized by acute onset of neuromuscular impairment for which there is no other plausible cause than the critical illness. It is characterized by bilateral symmetrical flaccid weakness of the limbs, facial and ocular muscles are often spared, and deep tendon reflexes are usually reduced (Castro, Seron, Fan, Gaete & Mickan, 2015).

Intensive care unit (ICU) patients has identified with generalized muscle weakness and represent about 70 -80 % of admitted patients. There are different terminology used to define this generalized weakness, a critical illness associated polyneuropathy, myopathy and neuromyopathy have broadly been identified. These syndromes are now all included under the clinical diagnostic label of ICU-AW (Appleton, Kinsella & Quasim, 2015).

The reported incidence of ICU-AW varies depending on the patient, timing of assessment and diagnostic methods used. ICU-AW is common and range from 26 -65% for patients intubated for a duration of 5-7 days, and

up to 67% of patients with prolonged periods of intubation (>10 days) (Wieske et al., 2015).

Intensive Care Unit Acquired Muscle Weakness (ICU-AW) persisted for at least another 7 days following extubation in an estimated 25% of those ICU patients. In patients with acute respiratory distress syndrome (ARDS), an estimated 60% of them develop ICU-AW. The incidence of ICU-AW is significantly higher in individuals with sepsis and has been reported to be as high as 50 -100 % (Nakamura & Yonclas, 2017).

Intensive Care Unit Acquired Muscle Weakness (ICU-AW) is classified to critical illness polyneuropathy (CIP), critical illness myopathy (CIM), or both. CIP refers to diffuse and symmetric sensorimotor axonal neuropathy and observe a distal loss of sensitivity to pain, vibration, and temperature, and often the patients have difficult to breathe spontaneously or to be weaned from mechanical ventilation to phrenic nerve and diaphragm involvement (McWilliams, Weblin & Atikns, 2015).

myopathy (CIM) Critical illness occurs more frequently than CIP and patients characteristics include early loss of muscle tissue, but with conservation or slightly reflexes. reduced deep tendon In critical illness