

Ain Shams University
Faculty of Education
Department of Mathematics

Sub - implicative ideals in KU - algebras and their applications in fuzzy theory

A THESIS

Submitted as a Partial Fulfillment for the Requirements of Master Degree for Teacher Preparation in Science (Pure Mathematics)

To

Department of Mathematics
Faculty of Education - Ain Shames University

By

OIA WAGIH ABD EL-BASEER

B.SC&Educ.(Mathematics) Ain Shames University, 2009

Under Supervisions

Dr . Samy Mohamed Mostafa Associate Professor (Emeritus) Mathematics Department Faculty of Educaton Ain Shams University Dr . Ragab Abd El Kader Omar Lecturer of Pure Mathematics Emeritus Mathematics Department Faculty of Education Ain Shams University

ACKNOWLEDGEMENTS

I would like to acknowledge my deepest gratitude and thankfulness to

Dr. Samy M.Mostafa. Associate. Prof. of Mathematics, Faculty of

Education Ain Shams University, for his suggesting the topic of the thesis,

for his kind supervision and for his invaluable help during the

preparation of the thesis.

I wish to express my deepest gratitude to Dr. Ragab Abd AL - Kadar Omar Lecturer of Mathematics, Faculty of Education, Ain Shams University, for his support and constant encouragement throughout this work.

Many thanks to department of mathematics in Faculty of Education, Ain Shams University, for their kind help and facilitied offered throughout this investigation.

Ain Shams University Faculty of Education Department of Mathematics

Approval

Degree: - Master Degree for Teacher Preparation in Science (Pure Mathematics)

Title: Sub – implicative ideals in – KU - algebras and their applications in fuzzy theory

Candidate: - OLA WAGIH ABD EL - BASEER

Approved by Advisors

Dr. Samy Mohamed Mostafa

Assistant Professor of Pure Mathematics Mathematics Department Faculty of Educaton Ain Shams University

Dr. Ragab Abd El Kader Omar

Lecturer of Pure Mathematics Mathematics Department Faculty of Education Ain Shams University

Cairo. Egypt. / / 2018

CONTENTS

SUMMARY	(i)
(0.1) BCK /BCI /KU -algebras and some related algebraic structures	1
(0.2) Bounded BCK-algebras	4
(0.3) BCK-ideals of BCK-algebras	7
(0.4) Some types of algebras related to BCK(BCI)-algebra	13
(0.4.1) BCH-algebras	13
(0.4.2) BCC-algebras	14
(0.4.3) BH-algebras	16
(0.4.4) B-algebras	17
(0.4.5) BG-algebras	19
(0.4.6) d-algebras	20
(0.4.7) QS-algebras	21
(0.4.8) Q-algebras	22
(0.4.9) BZ-algebras	23
(0.4.10) BM-algebras	24
(0.4.11) BF-algebras	25
(.4.14) SU-algebras	26
(0.4.15) IS-algebras	27
$(0.4.16)$ β -algebras	28
(0.4.17) CS-algebras	28
(0.4.18) AC-algebras	29
(0.4.19) BCL-algebras	30
(0.4.20) BRK-algebras	31

CONTENTS

(0.4.21) BI-algebras	33
QI-algebras	34
(0.4.22) BN – algebras	35
(0.4.23) BP-algebras	36
(0.4.24) BO -algebra	37
(0.4.25) Binary algebras	38
(0.4.26) INK-algebras	39
Some types of algebras related to KU –algebras	41
(0.4.27)KU-algebras	41
(0.4.28) Pseudo KU-algebras (PKU-algebra)	43
(0.4.29)CI-algebras	44
(0.4.30)KK-algebras	45
(0.4.31)I-algebras	47
(0.4.32)PU-algebra	47
(0.5.1) Fuzzy concepts in BCK(BCI)-algebras	50
(0.5.2) Fuzzy subalgebras and fuzzy ideals in BCK(BCI)-algebras	51
(0.5.3)homomorphism on BCK(BCI)-algebras and fuzzy ideals of BCK(BCI)-	53
algebras	
(0.5.4) The Cartesian product of fuzzy subset in BCK(BCI)-algebras	54
(0.6.1) Neutrosophic algebraic structures	56
(0.6.2)Neutrosophic Groups	56
(0.6.3) Neutrosophic KU-algebras	57
(0.6.4)- Neutrosophic Structures.(neutrosophic logic point of view,)	60

CONTENTS

CHAPTER(1):Sub implicative ideals of KU-Algebras (1.1) ON KU-Algebra (1.2) by (sub implicative positive implicative sub commutative) ideal	61 63
(1.2) ku - (sub implicative , positive implicative , sub commutative) ideal CHAPTER 2 :Fuzzy Sub implicative ideals of KU-Algebras	03
(2.1) Fuzzy sub-implicative ideal(2.2) Fuzzy sub commutative ideal	71 75
CHAPTER 3 :Fuzzy implicative ideals in K-algebras (3.1) Fuzzy implicative ideal (3.2) Cartesian product of fuzzy implicative ideal	79 82
CHAPTER 4 :Single Valued Neutrosophic sub implicative Ideals of KUAlgebras	86
REFERENCES	95
Algorithm for KU-algebras	101

SUMMARY

Y. Imai and K. Iseki introduced two classes of abstract algebras: BCK- algebras and BCIalgebras [18-22]. It is known that the class of BCK-algebras is a proper subclass of the class of BCI -algebras. In [3, 11, 16, and 17] Q. P. Hu and X. Li introduced a wide class of abstract algebras: BCH - algebras. They have shown that the class of BCI- algebras is a proper subclass of the class of BCH- algebras. In [58] the authors introduced the notion of d-algebras, which is another useful generalization of BCK- algebras, and then they investigated several relations between d-algebras and BCK- algebras as well as some other interesting relations between d-algebras and oriented digraphs. Y.B. Jun, E. H. Roh and H. S. Kim[26] introduce a new notion, called BH-algebras, which is a generalization of BCH/ BCI /BCK-algebras. They also defined the notions of ideals in BH-algebras. Recently J. Neggers and H. S. Kim[61] introduced the notion of B-algebra, and studied some of its properties. In 1983, (Y. Komori) [39] introduced a notion of BCC-algebras, and (W. A. Dudek) [15] redefined the notion of BCC-algebras by using a dual form of the ordinary definition in the sense of Y. Komori. In [15], (W. A. Dudek and X. H. Zhang) introduced a notion of BCC-ideals in BCC algebras and described connections between such ideals and congruences. In 2001, (J.Neggers, S.S.Ahn and H.S.Kim) [59] introduced a new notion, called a Q-algebra and generalized some theorems discussed in BCI/BCK-algebras. Prabpayak and Leerawat [62, 63] introduced a new algebraic structure which is called KU-algebra. They gave the concept of homomorphisms of KUalgebras and investigated some related properties. The concept of a fuzzy set, was introduced in [74]. O. Xi [72] applied the concept of fuzzy to BCK-algebras. In [45,47,52], studied the fuzzification of BCK-algebra and BCI-algebra. In 2002, Mostafa Abd-Elnaby and Yousef [55] introduced the notion of fuzzy ideals of KU-algebras and then they investigated several basic properties which are related to fuzzy KU-ideals. They described how to deal with the homomorphic image and inverse image of fuzzy KUideals. They have also proved that the Cartesian product of fuzzy KU-ideals in Cartesian product of fuzzy KU-algebras are fuzzy KU-idealsideals. Liu and Meng [23] introduced the notion of sub-implicative ideals in BCI-algebras. Also Jun [43] introduced the notion of fuzzy sub-implicative ideals of BCI-algebras and obtained some related interesting properties of these concepts.

Neutrosophic set and neutrosophic logic were introduced in1995 by Smarandache as generalizations of fuzzy set and respectively intuitionistic fuzzy logic. In neutrosophic logic, each proposition has a degree of truth (T), a degree of indeterminancy (I) and a degree of falsity (F), where T,I, F are standard or non-standard subsets of]–0, 1+[, see [28,29,66,71].Neutrosophic logic has wide applications in science, engineering, Information Technology, law, politics, economics, finance, econometrics, operations research, optimization theory, game theory and simulation etc. Agboola and Davvaz introduced the concept of neutrosophic BCI/BCK-algebras in [1, 2]. Davvaz B. Davvaz, S M. Mostafa and F.Kareem [13] introduce a neutrosophic KU-algebra and KU-ideal and investigate some related properties. Recently H. Wang et.al [71] introduced an instance of neutrosophic set known as single valued neutrosophic set which was motivated from the practical point of view and that can be used in real scientific and engineering applications.

The thesis deals mainly with new algebraic structure is called sub-implicative ideals in KU-algebras, fuzzy sub-implicative (implicative) ideals of KU-algebras, concepts single valued neutrosophic of sub-implicative ideals in KU-algebras and investigate some related properties.

This thesis has been mainly divided into five chapters. The main text of the thesis is in chapters 1, 2, 3 and 4.

Chapter 0

In this chapter we have given an exhaustive of the basic definitions of some algebras and fuzzy sets which are needed in the subsequent chapters and further, the history of the problem.

Chapter 1

In this chapter, the notions of ku- sub implicative/ *ku*-positive/ ku- sub-commutative ideals in KU-algebras are established. and some of their properties are investigated. Also,

the relationships with ku -sub implicative ideals and ku- sub-commutative/ *ku*-positive implicative are given.

Chapter 2

In this chapter, We consider the fuzzification of sub-implicative (sub-commutative) ideals in KU-algebras, and investigate some related properties. We give conditions for a fuzzy ideal to be a fuzzy sub-implicative(sub-commutative) ideal. We show that any fuzzy sub-implicative (sub-commutative) ideal is a fuzzy ideal, but the converse is not true. Using a level set of a fuzzy set in a KU-algebra, we give a characterization of a fuzzy sub-implicative (sub-commutative) ideal.

.

Chapter 3

In this chapter, we consider ku - implicative ideal (briefly implicative ideal) in KU-algebras .The notion of fuzzy implicative ideals in KU - algebras are introduced, several appropriate examples are provided and their some properties are investigated. The image and the inverse image of fuzzy implicative ideals in KU - algebras are defined and how the image and the inverse image of fuzzy *implicative* ideals in KU - algebras become fuzzy implicative ideals are studied. Moreover, the Cartesian product of fuzzy implicative ideals in Cartesian product of KU – algebras are given.

Chapter 4

In this chapter, We consider the concepts single valued neutrosophic of sub-implicative ideals in KU-algebras, and investigate some related properties. We give conditions for a single valued neutrosophic ideal to be a single valued neutrosophic sub-implicative ideal. We show that any single valued neutrosophic sub-implicative ideal is a single valued neutrosophic ideal, but the converse is not true. Using a level set of a single valued neutrosophic set in a KU-algebra, we give a characterization of single valued neutrosophic sub-implicative ideal.

LIST OF PUBLICATIONS

- 1- Mostafa S. M., Omar R. A. K, Abd El- Baseer, O. W. Sub implicative ideals of KU-Algebras, International Journal of Modern Science and Technology Vol. 2, No. 5, 2017. Page 223-227.
- 2- S. M. Mostafa, O. W. A. Baseer. Fuzzy Implicative deals of KU-Algebras J. new theory Year: 2018, Number: 22, Pages: 82-91
- 3- S. M. Mostafa, O. W. A. Baseer. Fuzzy Sub Implicative deals of KU-Algebras J. new theory Year: **2018**, Number: **23**, Pages: **1-12**
- 4- O. W. A. Baseer, S. M. Mostafa single valued neutrosophic sub-implicative ideal of KU-Algebras.at J.new theory Year :2018, Number 25 ISSN:2149-1402

In this chapter we collect all the necessary preliminaries which will be useful in our discussions in the main text of the thesis.

$$\S$$
 (0.1) BCK/BCI/KU -algebras and some related algebraic structures

In this section, we review some definitions of BCK/BCI -algebras and some related algebraic structures. The main results in this section are taken from [18 - 22, 49, 50, 51, 68, 69, and 73]

Preliminaries

Definition 0.1.1: Let X be a set with a binary operation "*" and a constant 0, then (X,*,0) is called a BCI -algebra, if it satisfies the following axioms:

(BCI -1)
$$((x*y)*(x*z))*(z*y) = 0$$

(BCI -2) $(x*(x*y))*y = 0$
(BCI -3) $x*x = 0$
(BCI -4) $x*y = 0$ and $y*x = 0$ implies $x = y$
for all $x, y, z \in X$

If a BCI -algebra X satisfies the identity 0 * x = 0, for all $x \in X$, then X is called a BCK algebra. It is known that the class of BCK -algebras is a proper subclass of the class of BCI -algebras. For brevity X is called a BCK - algebra.

A binary relation \leq in X is defined by : $x \leq y$ if and only if x * y = 0, then (X, *, 0) is a BCK - algebra if and only if it satisfies that :

(BCI `1):
$$((x*y)*(x*z)) \le x*y$$

(BCI `2): $(x*(x*y)) \le y$
(BCI `3): $x \le x$,
(BCI `4) $x \le y$ and $y \le x$ implies $x = y$
(BCI `5): $0 \le x$
(BCI `6): $x \le y$ if and only if $x*y = 0$.

In a BCK - algebra (X,*,0), the following properties are satisfied:

1.
$$x \le y$$
 implies $z * x \le z * y$

2.
$$x \le y$$
 and $y \le z$ imply $x \le z$

3.
$$(x * y) * z = (x * z) * y$$

4.
$$(x * y) \le z$$
 implies $x * z \le y$

5.
$$(x*z)*(y*z) \le x*y$$
.

6.
$$x \le y$$
 implies $x * z \le y * z$.

7.
$$(x*(x*y))*(y*x) \le x*(x*(y*(y*x))))$$

8.
$$x * y \le x$$

9.
$$x * 0 = x$$

Example 0.1.2: Let $X = \{0,1,2,3,4\}$ in which * is defined by the following table :

*	0	1	2	3	4
0	0	0	0	0	0
1	1	0	0	0	0
2	2	1	0	0	0
3	3	1	1	0	0
4	4	1	1	1	0

Then X is BCK - algebra.

Theorem 0.1.3: An algebra (X,*,0) of type (2,0) is a BCK - algebra if and only if it satisfies the following conditions:

$$(BCI_1): ((x*y)*(x*z))*(z*y) = 0$$
,

(a) :
$$x * (0 * y) = x$$
 and

(b) (BCI₄):
$$x * y = 0 = y * x$$
 implies $x = y$, for all $x, y, z \in X$,

For any $x, y \in X$ denote $x \wedge y = y * (y * x)$

Obviously $x \wedge x = x$, $x \wedge 0 = 0 \wedge x = 0$. But in general, $x \wedge y \neq y \wedge x$

Definition 0.1.4: Let (X,*,0) be a BCK – algebra, and let S be a non – empty subset of X, then S is called a sub - algebra of X, if for all $x, y \in S$, $x * y \in S$, i.e S is closed under the binary operation * of X.

Example 0.1.5 : Let $X = \{0,1,2\}$ in which * is defined by the following table :

*	0	1	2
0	0	0	0
1	1	0	0
2	2	2	0

It is clear that $S = \{0,2\}$ is BCK sub-algebra of X.

Theorem 0.1.6:

Suppose that (X,*,0) is a BCK - algebra and let S be a sub - algebra of X then:

- (i) $0 \in S$
- (ii) (S,*,0) is also a BCK algebra
- (iii) X is a subalgebra of X
- (iv) $\{0\}$ is also a subalgebra of X.

§ 0.2 Bounded BCK-algebras

The main results in this section are taken from [18 - 22, 49,50,51, 68, 69,73]

Definition 0.2.1 : If there is an element 1 of BCK – algebra X satisfying $x \le 1$ for all $x \in X$, then the element 1 is called unit of X. A BCK – algebra with unit is called to be bounded.

Example 0.2.2 : Let $X = \{0,1,2,3,4\}$ in which * is defined by the following table :

*	0	1	2	3	4
0	0	0	0	0	0
1	1	0	0	0	0
2	2	1	0	1	0
3	3	3	3	0	0
4	4	4	4	4	0

Then (X,*,0) is bounded BCK-algebra with unit 4.

Note: In a bounded BCK – algebra X, we denote $1 * x by N_x$.

Definition0.2.3: For a bounded BCK – algebra X , if an element $\,x$ satisfies $NN_x = x$, then x is called an involution $\,$.

Theorem 0.2.4 In a bounded BCK – algebra X , we have :

- (a) $N_1 = 0$, $N_0 = 1$,
- (b) $NN_x \leq X$
- (c) $N_y * N_x \le y * x$
- (d) $y \le x \text{ implies } N_x \le N_y$
- (e) $N_{x*y} = N_{y*x}$
- (f) $NNN_x = N_x$

Theorem 0.2.5: In a bounded BCK – algebra X, we have $x * N_y = y * N_x$,

for all x and $y \in S(X)$ where S(X) is the set of all involutions of a bounded BCK-algebra.

Note that : $NN_0 = N_1 = 0$, and $NN_1 = N_0 = 1$, then the elements 0 and 1 are contained in S(X). Hence S(X) is non-empty.

Theorem 0.2.6: For any bounded BCK - algebra X , we have S(X) is a bounded subalgebra of X .

Theorem0.2.7: A BCI –algebra X satisfying x*(y*z) = (x*y)*z is a group in which every element is an involution .

Remark: Let X and Y be BC I -algebras. We define *on X × Y by,

$$(x, y) * (u, v) = (x * u, y * v)$$

for every (x, y), $(u, v) \in X \times Y$. Then $(X \times Y, *, (0, 0))$ is a BC I -algebra.

Definition 0.2.8 Let (X; *, 0) be a BCK-algebra .Then X is called a positive implicative if it satisfies for all x, y, $z \in X$, (x*z)*(y*z)=(x*y)*z.

Example. 0.2.9 Let $X = \{0, a, b, 1\}$ be defined by the following table :

*	0	a	b	1
0	0	0	0	0
a	a	0	a	0
b	b	b	0	0
1	1	1	1	0

Then (X; *, 0) is a positive implicative BCK-algebra.

Proposition 0.2.10 Let (X; *, 0) be a BCK-algebra ,then the following conditions are equivalent: for all $x, y, z \in X$,