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SUMMARY 
Y. Imai and K. Iseki introduced two classes of abstract algebras: BCK- algebras and BCI-

algebras [18-22]. It is known that the class of BCK-algebras is a proper subclass of the 

class of BCI -algebras. In [3, 11, 16, and 17] Q. P. Hu and X. Li introduced a wide class 

of abstract algebras: BCH - algebras. They have shown that the class of BCI- algebras is 

a proper subclass of the class of BCH- algebras. In[58 ] the authors introduced the notion 

of d-algebras, which is another useful  generalization of BCK- algebras, and then they 

investigated several relations between d-algebras and BCK- algebras as well as some 

other interesting relations between d-algebras and oriented digraphs. Y.B. Jun, E. H. Roh 

and H. S. Kim[26 ] introduce a new notion, called BH-algebras, which is a generalization 

of BCH/ BCI /BCK-algebras. They also defined the notions of ideals in BH-algebras. 

Recently J. Neggers and H. S. Kim[ 61 ] introduced the notion of B-algebra, and studied 

some of its properties. In 1983, (Y. Komori) [39 ] introduced a notion of BCC-algebras, 

and (W. A. Dudek) [15 ] redefined the notion of BCC-algebras by using a dual form of 

the ordinary definition in the sense of Y. Komori. In [15 ], (W. A. Dudek and X. H. 

Zhang) introduced a notion of BCC-ideals in BCC algebras and described connections 

between such ideals and congruences. In 2001, (J.Neggers, S.S.Ahn and H.S.Kim) [ 59] 

introduced a new notion, called a Q-algebra and generalized some theorems discussed in 

BCI/BCK-algebras. Prabpayak and Leerawat [62, 63] introduced a new algebraic 

structure which is called KU-algebra. They gave the concept of homomorphisms of KU-

algebras and investigated some related properties. The concept of a fuzzy set, was 

introduced in [74]. O. Xi [72] applied the concept of fuzzy to BCK-algebras. In  

[45,47,52  ], studied the fuzzification of BCK-algebra and BCI-algebra. In 2002, Mostafa 

Abd-Elnaby and Yousef [55] introduced the notion of fuzzy ideals of KU-algebras and 

then they investigated several basic properties which are related to fuzzy KU-ideals. They 

described how to deal with the homomorphic image and inverse image of fuzzy KU-

ideals. They have also proved that the Cartesian product of fuzzy KU-ideals in Cartesian 

product of fuzzy KU-algebras are fuzzy KU-idealsideals.  Liu and Meng [23] introduced 

the notion of sub-implicative ideals in BCI-algebras. Also Jun [43] introduced the notion 
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of fuzzy sub-implicative ideals of BCI-algebras and obtained some related interesting 

properties of these concepts. 

Neutrosophic set and neutrosophic logic were introduced in1995 by Smarandache as 

generalizations of fuzzy set and respectively intuitionistic fuzzy logic.  In neutrosophic 

logic, each proposition has a degree of truth (T), a degree of indeterminancy (I)  and a 

degree of falsity (F),where  T,I, F  are standard  or non-standard  subsets  of ]−0,  1+[,  

see [28 ,29,66,71].Neutrosophic logic has wide applications in science, engineering, 

Information Technology, law, politics, economics, finance, econometrics, operations 

research,  optimization theory,  game theory and simulation etc. Agboola and Davvaz 

introduced the concept of neutrosophic BCI/BCK-algebras in [1, 2]. Davvaz B. Davvaz, 

S M. Mostafa and F.Kareem [13] introduce a neutrosophic KU-algebra and KU-ideal and 

investigate some related properties.Recently H.Wang et.al [71] introduced an instance of 

neutrosophic set known as single valued neutrosophic set which was motivated from the 

practical point of view and that can be used in real scientific and engineering 

applications. 

 

The thesis deals mainly with new algebraic structure is called sub-implicative ideals in 

KU-algebras, fuzzy sub-implicative (implicative) ideals of KU-algebras , concepts single  

valued  neutrosophic of sub-implicative ideals in  KU-algebras and investigate some  

related properties. 

This thesis has been mainly divided into five chapters. The main text of the thesis is in 

chapters 1, 2, 3 and 4. 

 

Chapter 0  

In this chapter we have given an exhaustive of the basic definitions of some algebras and 

fuzzy sets which are needed in the subsequent chapters and further, the history of the 

problem. 

 

Chapter 1 

  In this chapter, the notions of ku- sub implicative/ ku-positive/ ku- sub-commutative 

ideals in KU-algebras are established. and some of their properties are investigated. Also, 
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the relationships with ku -sub implicative ideals and ku- sub-commutative/ ku-positive 

implicative are given. 

 

Chapter 2 

 
In this chapter,   We consider the fuzzification of sub-implicative (sub-commutative) 

ideals in  KU-algebras, and investigate some  related properties. We  give conditions for a 

fuzzy  ideal  to  be a fuzzy  sub-implicative(sub-commutative)  ideal. We show that any 

fuzzy   sub-implicative (sub-commutative) ideal   is a fuzzy   ideal, but the converse is 

not true. Using a level set  of a fuzzy  set  in a KU-algebra, we give  a characterization of 

a fuzzy  sub-implicative (sub-commutative) ideal. 

. 

Chapter 3  
In this chapter, we consider ku - implicative ideal (briefly implicative ideal)  in KU- 

algebras .The notion of fuzzy implicative ideals in KU - algebras are introduced, several 

appropriate examples are provided and their some properties are investigated. The image 

and the inverse image of fuzzy implicative ideals in KU - algebras are defined and how 

the image and the inverse image of fuzzy implicative ideals in KU - algebras become 

fuzzy implicative ideals are studied. Moreover, the Cartesian product of fuzzy implicative 

ideals in Cartesian product of KU – algebras are given. 

 

Chapter 4 

In this chapter, We consider the concepts single valued neutrosophic of sub-implicative 

ideals in KU-algebras, and investigate some related properties. We give conditions for a 

single valued neutrosophic    ideal to be a single valued neutrosophic   sub-implicative 

ideal. We show  that any single  valued  neutrosophic   sub-implicative  ideal   is  a single  

valued  neutrosophic  ideal, but the  converse is not  true. Using a level  set  of a single  

valued  neutrosophic  set  in a KU-algebra, we give  a characterization of single  valued  

neutrosophic  sub-implicative  ideal. 
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In this chapter we collect all the necessary preliminaries which will be useful in our 
discussions in the main text of the thesis. 

ss (0.1) BCK /BCI /KU -algebras and some related algebraic structures  

In this section, we review some definitions of BCK/ BCI -algebras and some related 

algebraic structures. The main results in this section are taken from [18 – 22, 49, 50, 

51, 68, 69, and 73] 

Preliminaries   

Definition 0.1.1 :  Let X  be a set with  a binary  operation “ * ” and  a constant 0,then                    

)0,,( X  is called a BCI -algebra ,if it satisfies the following axioms: 

(BCI -1)  0)())()((  yzzxyx  

(BCI -2) 0))((  yyxx  

(BCI -3) 0 xx  

(BCI -4) yximpliesxyandyx  00  

for all Xzyx ,,  

If a BCI -algebra X  satisfies  the identity 00  x , for all Xx , then X   is called a 

BCK algebra.  It is  known that the class  of BCK -algebras  is a  proper  subclass  of the  

class  of BCI -algebras. For brevity X  is called a BCK - algebra . 

A binary relation  ≤   in X  is defined by : x ≤ y   if and only if 0 yx ,then )0,,( X  is                   

a BCK - algebra if and only if it satisfies that : 

     (BCI `1) :  yxzxyx  ))()((    

     (BCI `2) :  yyxx  ))((   

 (BCI `3) :   xx  , 

(BCI `4) yximpliesxyyandx   

(BCI `5) :    x0  

(BCI `6) :   0 yxifonlyandifyx  . 
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In a BCK - algebra )0,,( X ,  the following properties are satisfied : 

1. yzxzimpliesyx   

2. zximplyzyandyx   

3. yzxzyx  )()(    

4. yzximplieszyx  )(   

5. yxzyzx  )()(   . 

6. .zyzximpliesyx   

7. ))))((()())(( xyyxxxyyxx   

8. xyx   

                9.   xx 0  

 
 

Example 0.1.2 : Let }4,3,2,1,0{X in which * is defined by the following table : 

* 0 1 2 3 4 

0 0 0 0 0 0 

1 1 0 0 0 0 

2 2 1 0 0 0 

3 3 1 1 0 0 

4 4 1 1 1 0 

Then X is BCK - algebra .  

Theorem 0.1.3 : An algebra )0,,( X of type ( 2,0) is a BCK - algebra if and only if it 

satisfies the following conditions : 

(BCI1) : 0)())()((  yzzxyx   ,  

(a) : xyx  )0(  and 

(b)  (BCI4) : xyyx  0  implies  yx  , for all Xzyx ,, , 
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For any Xyx , denote )( xyyyx    

 
Obviously 000,  xxxxx  . But in general , xyyx   

 
Definition 0.1.4 : Let )0,,( X be a BCK – algebra , and let S  be a non – empty subset of  

X  ,  then S  is called a sub - algebra of  X  , if for  all SyxSyx  ,, , i.e S  is closed 

under   the binary operation  *  of  X  . 

 

Example 0.1.5 : Let }2,1,0{X  in which * is defined by the following table : 

* 0 1 2 

0 0 0 0 

1 1 0 0 

2 2 2 0 

 

It is clear that }2,0{S is BCK sub-algebra of X  .  

 
Theorem0.1.6 : 

 Suppose that )0,,( X  is a BCK - algebra and let S  be a sub - algebra of  X   then :  

  (i)    0 S  

  (ii)  )0,,( S  is also a  BCK – algebra  

  (iii) X  is a subalgebra of  X     

  (iv) {0} is also a subalgebra of X  .   
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ss  0.2 Bounded BCK-algebras  

The main results in this section are taken from [18 – 22, 49,50 ,51, 68 , 69,73 ] 

Definition 0.2.1 : If there is an element 1 of  BCK – algebra X satisfying 1x for all 

Xx  , then the element 1 is called unit of X  . A BCK – algebra  with unit is called to be 

bounded . 

Example 0.2.2 : Let }4,3,2,1,0{X in which * is defined by the following table : 

 

* 0 1 2 3 4 

0 0 0 0 0 0 

1 1 0 0 0 0 

2 2 1 0 1 0 

3 3 3 3 0 0 

4 4 4 4 4 0 

Then )0,,( X  is bounded BCK-algebra with unit 4 .  

Note  :  In a bounded BCK – algebra X  , we denote xNbyx1 . 

 
Definition0.2.3 : For a bounded BCK – algebra X , if an element  x satisfies 

NNx = x , then x is called an involution  .  

 
Theorem 0.2.4  In a bounded BCK – algebra X  , we have :  

  (a) 1,0 01  NN , 

  (b) XNN x    

  (c) xyNN xy   

  (d) yx NNimpliesxy   

  (e)  xyyx NN    

  (f)  xx NNNN    
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Theorem 0.2.5: In a bounded BCK – algebra X  , we have  xy NyNx    , 

for all )(XSyandx  where )(XS   is the set of all involutions of a bounded BCK- 

algebra .    

Note that : 010  NNN , and 101  NNN , then the elements  0 and 1 are contained                            

in )(XS . Hence )(XS is non - empty.   

Theorem 0.2.6 :For any bounded BCK - algebra X  , we have )(XS is a bounded sub-

algebra of X  . 

Theorem0.2.7: A BCI –algebra X satisfying  zyxzyx  )()(  is a group in which 

every element is an involution . 

Remark : Let X  and  Y  be BC I -algebras.   We define ∗on X × Y  by, 

          (x, y) ∗ (u, v) = (x ∗ u, y ∗ v) 

     for every (x, y), (u, v) ∈ X ×Y . Then (X ×Y, ∗, (0, 0)) is a BC I -algebra. 

 

Definition 0.2.8 Let (X;  , 0) be a BCK-algebra  .Then X is called a positive implicative 
if  it satisfies for all x, y , z ∈ X , .)()()( zyxzyzx   

 

Example. 0.2.9  Let  X = {0, a, b, 1} be defined by the following table : 

  

 

 

 

Then (X;  , 0) is a positive implicative BCK-algebra . 

 

Proposition 0.2.10 Let (X;  , 0) be a BCK-algebra  ,then the following conditions are 
equivalent : for all x, y, z ∈ X, 

  0 a b 1 
0 0 0 0 0 
a a 0 a 0 
b b b 0 0 
1 1 1 1 0 


