EFFECT OF NANOPARTICLES AND BIOAGENTS TO INDUCE RESISTANCE IN WHEAT PLANTS AGAINST POWDERY MILDEW DISEASE

By

MOHAMED GAMAL FARHAT MAHMOUD

B.Sc. Agric. Sci. (Plant Pathology), Fayoum University, 2011

A Thesis Submitted in Partial Fulfillment
Of
The Requirements for the Degree of

MASTER OF SCIENCE in

Agricultural Science (Plant Pathology)

Department of Plant Pathology
Faculty of Agriculture
Ain Shams University

Approval Sheet

EFFECT OF NANOPARTICLES AND BIOAGENTS TO INDUCE RESISTANCE IN WHEAT PLANTS AGAINST POWDERY MILDEW DISEASE

 $\mathbf{B}\mathbf{y}$

MOHAMED GAMAL FARHAT MAHMOUD

B.Sc. Agric. Sci. (Plant Pathology), Fayoum University, 2011

This thesis for M.Sc. degree has been approved by:

Date of Examination: 14/1/2019

Dr.	Mostafa Abdelazeem Aboelsoud Amer
	Prof. Emeritus of Plant Pathology, Faculty of Agriculture, (Saba-
	Bacha), Alexandria University.
Dr.	Alaa Eldin Bayoumi Abd El Khalek
	Prof. of Pesticides, Faculty of Agriculture, Ain Shams University.
Dr.	Wafaa Mohamed El-Sayed Haggag
	Researcher Prof. of Plant Pathology, National Research Centre.
Dr.	Ahmed Ahmed Mosa
	Prof. Emeritus of Plant Pathology, Faculty of Agriculture, Ain Shams
	University.

EFFECT OF NANOPARTICLES AND BIOAGENTS TO INDUCE RESISTANCE IN WHEAT PLANTS AGAINST POWDERY MILDEW DISEASE

By

MOHAMED GAMAL FARHAT MAHMOUD

B.Sc. Agric. Sci. (Plant Pathology), Fayoum University, 2011

Under the supervision of

Dr. Ahmed Ahmed Mosa

Prof. Emeritus of Plant Pathology, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University, (Principal Supervisor)

Dr. Wafaa Mohamed El-Sayed Haggag

Researcher Prof. of Plant Pathology, Department of Plant Pathology, National Research Centre

Dr. Marian Shokry Thabet

Lecturer of Plant Pathology, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University

ABSTRACT

Mohamed Gamal Farhat Mahmoud. "Effect of Nanoparticles and Bioagents to Induce Resistance in Wheat Plants Against Powdery Mildew Disease". Unpublished M.Sc. Thesis, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University, 2018

Powdery mildew disease caused by *Blumeria graminis* f. sp. *tritici* (Bgt) is one of the most serious diseases of wheat (Triticum aestivum L. emThell.) in Egypt and world-wide. The effect of nanoparticles of silicon and titanium, bioagents and chemical inducers against powdery mildew disease of wheat plants was studied, under greenhouse and field conditions. Nanoparticles of silicon and titanium were biologically synthesized from different bacterial and fungal isolates of wheat rhizosphere and phyllosphere. Transmission electron microscopy (TEM) revealed that *Pseudomonas putida* (PpFT1) produced the small size of both nano silicon particles (SiNPs) which ranged from 1.52 to 8.73 nm and nano titanium particles (TiNPs) from 5.81 to 8.95 nm. While, SiNPs and TiNPs that synthesized by Trichoderma harzianum (ThFT1) ranged from 5.0 to 9.0 nm and 2.0 to 16.0 nm, respectively. The SiNPs and TiNPs were tested as seed soaking and subsequent foliar spray, treatment, to control powdery mildew on wheat seedling under greenhouse conditions. The most effective treatments were SiNPs at concentration of 100 and 150 ppm synthesized by P. putida (PpFT1) and Bacillus subtilis (BsBN3) which reduced the powdery mildew severity by 83.3, 89.7, 84.6 and 91.0 % respectively. While, SiNPs at concentration of 150 ppm synthesized by T. harzianum (ThFT1) reduced the powdery mildew severity by 82.0 %, TiNPs synthesized by P. putida (PpFT1) at concentration of 150 ppm reduced powdery mildew severity by 93.5 % followed by TiNPs synthesized by P. putida (PpFT1) at 100 ppm, Bacillus subtilis (BsBN3) at 150 ppm and T. harzianum (ThFT1) at 100 and 150 ppm which reduced the powdery mildew severity by 84.6, 80.7, 78.2 and 80.7 %.

Under field conditions at two locations in Egypt, in Gelbana (North Sinai) in season 2015/2016 and Nubaria (Beheira) in seasons 2015/2016 and 2016/2017, the most effective treatments were SiNPs and TiNPs. SiNPs and TiNPs bio-synthesized by Pseudomonas putida (PpFT₁) and Bacillus subtilis (BsBN₃) reduced disease severity by 92.3, 92.3, and 96.9 and 92.3 % respectively. Meanwhile, methyl jasmonate and arginine reduced powdery mildew severity more than 81.5 % as compared with untreated plants. Moreover, the highest reduction in area under disease progress curve (AUDPC) was obtained by SiNPs and TiNPs bio-synthesized by P. putida (PpFT₁) and B. subtilis (BsBN₃), in addition to, methyl jasmonate which reduced AUDPC by 89.3, 87.7, 88.1, 88.5 and 83.2 % respectively, followed by SiNPs and TiNPs biosynthesized by T. harzianum (ThFT₁), T. hamatum (TmSA₂), T. viride (TvGK₂) and P. fluorescens (PfBN₁) which reduced the disease severity more than 63.5 % compared with untreated plants. However, all tested treatments significantly increased the growth parameters i.e. fresh weight of plant (g) and Spike weight (g). Furthermore, the highest increase in grain yield was obtained by SiNPs and TiNPs bio-synthesized by P. putida (PpFT₁), B. subtilis (BsBN₃) and TiNPs bio-synthesized by P. polymyxa (PbBB₂) which increased grain yield by more than 211.8 %.

Increases in peroxidase, polyphenol oxidase and chitinase enzymes activities was recorded in wheat plants treated by SiNPs and TiNPs, synthesized by *P. putida* (PpFT₁), *Bacillus subtilis* (BsBN₃) and *T. harzianum* (ThFT₁) in addition to methyl jasmonate. SiNPs and TiNPs synthesized by P. putida (PpFT1), *Bacillus subtilis* (BsBN3) increased total protein and phenols, by more than 100.0%.

Key words: Wheat, Powdery mildew, Nanoparticles, Bioagents, Induced resistance

ACKNOWLEDGMENT

All praises are due to "Almighty God", who blessed me with those kind professors and colleagues, who gave me the support to produce this thesis.

I would like to express my deep and sincere gratitude to my supervisor **Prof. Dr. Ahmed Ahmed Ahmed Mosa**, Professor Emeritus of Plant Pathology, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University, for supervision of this study, guidance, and critically reviewing the manuscript.

I am greatly indebted to **Prof. Dr. Wafaa Mohamed El-Sayed Haggag,** Prof. of Plant Pathology, Department of Plant Pathology, National Research Center, for this study, her continuous supervision and for the extremely good research and aid facilities. She supported me with constructive supervision, valuable discussion and criticism throughout the course of this Thesis.

Deep thanks and appreciation to **Dr. Marian Shokry Sabet,** Lecturer of Plant Pathology, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University; for her supervision, advice and meticulous observation throughout the work.

Many thanks to **Prof. Dr. Farid Abd-El-Kreem Ibrahim,** Prof. of Plant Pathology, Department of Plant Pathology, National Research Center, for his in-part helping me in training and valuable advice.

Also, I would like to express thanks for **Prof. Dr. Essam Mohamed Hoballah,** Prof. of Microbiology, Department of Microbiology, National Research Center for providing me the wonderful opportunity and the necessary facilities to carry out the research work of biosynthesis of nanomaterials and identification of bacterial isolates.

I gratefully acknowledged the research and technical staff of the Plant Pathology Department, National Research Centre for their assistance. Appreciation is also extended to all staff members of Plant Pathology Department, National Research Center, Dokki, Egypt and all Staff members of the Department of Plant Pathology, Faculty of Agriculture, Ain Shams University for their support and personal encouragement, valuable help.

Words fail me to express my appreciation to **my parents and my**wife for their support and help me through my life and my study, as well
as to **my dear brother** and **sisters** for their support in all my life.

CONTENTS

	Page
LIST OF TABLES.	Vi
LIST OF FIGURES	IX
LIST OF ABBREVIATION	XI
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1. Foliar fungal diseases of wheat	4
2.2. Powdery mildew disease	4
2.3. Methods for controlling powdery mildew	5
2.3.1. Nanomaterials for plant diseases control	6
2.3.1.1. Biosynthesis of nanoparticles	8
2.3.1.1.1. Biosynthesis of nanoparticles by fungi	9
2.3.1.1.2. Biosynthesis of nanoparticles by bacteria and	
actinomycetes	10
2.3.1.2. Nanomaterials and plant disease management	11
2.3.1.3. Effect of Nanoparticles on the pathogens /	
microorganisms	12
2.3.2. Biological control	16
2.3.3. Chemical inducers of resistance	18
3. MATERIALS AND METHODS	22
3.1. Survey of powdery mildew disease	22
3.2. Powdery mildew assessment	22
3.3. Laboratory experiments	23
3.3.1. Isolation and identification of antagonistic fungi and	
bacteria	23
3.3.2. Biosynthesis of silicon and titanium nanoparticles	24
3.3.2.1. Preparation of bioagents inoculum	24
3.3.2.2. Biosynthesis of nanoparticles	25
3.3.2.3. Nanoparticles characterizations by TEM	26
3.4. Preparation of bioagent inoculum for disease	26
control studies	20

3.4.1. Preparation of fungal bioagent inoculum	26
3.4.2. Preparation of bacterial bioagent inoculum	27
3.5. Greenhouse experiments	27
3.5.1. Plant materials	27
3.5.2. Preparation of powdery mildew (BGT) inoculum	28
3.5.3. Treatments	28
3.5.4. Inoculation of wheat plants with powdery mildew	
(BGT)	28
3.5.5. Efficacy of bioagents	29
3.5.6. Effect of nano materials	30
3.5.7. Effect of chemical inducers	30
3.6. Field experiments	30
3.6.1. Treatments	31
3.6.2. Assessment of treatments efficacy	31
3.6.2.1. Effect on area under disease progress curve (AUDPC)	31
3.6.2.2. Effect on plant growth parameters and yield	32
3.7. Assay of biochemical changes associated with	-
treatments	32
3.7.1. Effect of treatments on some enzymatic activities	32
3.7.1.1. Enzyme extraction and assay	32
3.7.1.2. Peroxidase assay (PO)	32
3.7.1.3. Polyphenol oxidase assay (PPO)	32
3.7.1.4. Chitinase assay	33
3.7.1.4.1. Preparation of dinitrosalicylic acid reagent	33
3.7.1.4.2. Colloidal chitin preparation	34
3.7.2. Determination of total phenol	34
3.6.3. Determination of total proteins	34
3.8. Statistical analysis	35
4. RESULTS	36
4.1. Survey of powdery mildew disease, under natural	
infection conditions, at different locations in Egypt,	

during 2013-2014 season	36
4.2. Isolation of fungi and bacteria from rhizosphere and phyllosphere of wheat	38
4.3. Biosynthesis and Transmission electron microscopy (TEM) of silicon and titanium nanoparticles	38
4.4. Greenhouse experiments	45
4.4.1. Efficacy of bioagents to control powdery mildew disease	45
4.4.2. Efficacy of nanoparticles to control powdery mildew disease	48
4.4.2.1. Effect of nano silicon particles bio-synthesized by fungal bioagents	48
4.4.2.2. Effect of nano silicon particles bio-synthesized by	40
various antagonistic bacteria	50
4.4.2.3. Effect of nano titanium particles bio-synthesized by	
fungal bioagents	50
4.4.2.4. Effect of nano titanium particles bio-synthesized by	
various antagonistic bacteria	52
4.4.3. Efficacy of chemical inducers to control powdery	
mildew of wheat plants under greenhouse conditions	55
4.5. Field experiments	57
4.5.1. The first Experiment: Gelbana (North Sinai) during	
2015/2016	57
4.5.1.1. Effect on disease severity of powdery mildew	57
4.5.1.2. Effect of different treatments on area under disease	
progress curve (AUDPC)	57
4.5.1.3. Effect on growth parameters	59
4.5.1.4. Effect on wheat yield	61
4.5.2. The second Experiment: Nobaria (Behira) during	
2015/2016 and 2016/2017 seasons	64

4.5.2.1. Effect on disease severity of powdery mildew	64
4.5.2.2. Effect on area under disease progress curve	
(AUDPC)	64
4.5.2.3. Effect on growth parameters	64
4.5.2.4. Effect on wheat yield	66
4.6. Biochemical changes associated with treatments	71
4.6.1. Effect on some enzymatic activities	71
4.6.1.1. Effect on peroxidase activity (PO)	71
4.6.1.2. Effect on polyphenol oxidase activity (PPO)	71
4.6.1.3. Effect on chitinase activity	74
4.6.2. Effect on total protein	74
4.6.3. Effect on total phenols	74
5. DICUSSION	78
6. SUMMARY	86
7. REFERENCES	92
8. ARABIC SUMMARY	

LIST OF TABLES

No	TITLE	Page
1	Disease severity of powdery mildew on wheat cultivars, grown	
	at 10 different locations in various regions/governorates in	
	Egypt, during 2013-2014 season	36
2	Fungal and bacterial isolates, obtained and identified from	
	rhizosphere and phyllosphere, of wheat plants	38
3	Effect of different Trichoderma spp. isolates on disease	
	severity of powdery mildew in wheat plants (cv. Misr-1) under	
	greenhouse conditions	46
4	Effect of various antagonistic bacteria on disease severity of	
	powdery mildew in wheat plants (cv. Misr-1), under	
	greenhouse conditions	47
5	Effect of nano silicon particles (SiNPs), bio-synthesized by	
	some fungal bioagents, on disease severity of powdery mildew	
	in wheat plants (Misr-1, cv.) under greenhouse conditions	49
6	Effect of nano silicon particles (SiNPs), bio-synthesized by	
	various antagonistic bacteria, on disease severity of powdery	
	mildew in wheat plants (Misr-1, cv.) under greenhouse	
	conditions.	51
7	Effect of nano titanium particles (TiNPs), bio-synthesized by	
	some fungal bioagent on disease severity of powdery mildew	
	in wheat plants (Misr-1, cv.) under greenhouse conditions	53
8	Effect of nano titanium particles (TiNPs), bio-synthesized by	
	various antagonistic bacteria on disease severity of powdery	
	mildew in wheat plants (Misr-1, cv.) under greenhouse	
	conditions	54
9	Effect of some chemical inducers of resistance on disease	
	severity of powdery mildew in wheat plants under greenhouse	
	conditions	56
10	Effect of nano silicon particles (SiNPs), nano titanium	

	particles (TiNPs), bioagents and chemical inducers on disease	
	severity of powdery mildew in wheat plants (cv. Misr-1),	
	under field conditions in Gelbana (North Sinai), during	
	2015/2016 growing season	58
11	Effect of nano silicon particles (SiNPs), nano titanium	
	particles (TiNPs), bioagents and chemical inducers on area	
	under disease progress curve (AUDPC) of powdery mildew in	
	wheat plants (cv. Misr-1) under field conditions in Gelbana	
	(North Sinai) during 2015/2016 growing season	60
12	Effect of nano silicon particles (SiNPs), nano titanium	
	particles (TiNPs), bioagents and chemical inducers on growth	
	parameters of wheat plants (cv. Misr-1) under field conditions	
	in North Sinai during 2015/2016 growing season	62
13	Effect of nano silicon particles (SiNPs), nano titanium	
	particles (TiNPs), bioagents and chemical inducers on yield of	
	wheat plants (cv. Misr-1) under field conditions in North Sinai	
	during 2015/2016 growing season	63
14	Effect of nano silicon particles (SiNPs), nano titanium	
	particles (TiNPs), bioagents and chemical inducers on disease	
	severity of powdery mildew in wheat plants (cv. Misr-1)	
	grown under field conditions in Nobaria (Beheira) during	
	2015/2016 and 2016/2017 seasons	65
15	Effect of nano silicon particles (SiNPs), nano titanium	
	particles (TiNPs), bioagents and chemical inducers on area	
	under disease progress curve (AUDPC) of powdery mildew in	
	wheat plants (cv. Misr-1) grown in Nobaria (Beheira) during	
	2015 / 2016 and 2016 / 2017	67
16	Effect of nano silicon particles (SiNPs), nano titanium	
	particles (TiNPs), bioagents and chemical inducers on growth	
	parameters of wheat plants (cv. Misr-1) under field conditions	
	in Nobaria (Beheira), during 2015/2016 and 2016/2017	
	seasons	69

17	Effect of nano silicon particles (SiNPs), nano titanium	
	particles (TiNPs), bioagents and chemical inducers on yield of	
	wheat plants (cv. Misr-1) under field conditions in Nobaria	
	(Beheira) during 2015/2016 and 2016/2017 seasons	70
18	Effect of nano silicon particles (SiNPs), nano titanium	
	particles (TiNPs), bioagents and chemical inducers on	
	peroxidase activity of wheat plants (cv. Misr-1)	72
19	Effect of nano silicon particles (SiNPs), nano titanium	
	particles (TiNPs), bioagents and chemical inducers on	
	polyphenol oxidase (PPO) activity of wheat plants (cv. Misr-1)	73
20	Effect of nano silicon particles (SiNPs), nano titanium	
	particles (TiNPs), bioagents and chemical inducers on	
	chitinase activity of wheat plants (cv. Misr-1)	75
21	Effect of nano silicon particles (SiNPs), nano titanium	
	particles (TiNPs), bioagents and chemical inducers on total	
	protein of wheat plants (cv. Misr-1)	76
22	Effect of nano silicon particles (SiNPs), nano titanium	
	particles (TiNPs), bioagents and chemical inducers on total	
	phenols of wheat plants (cv. Misr-1)	77

LIST OF FIGURES

No	TITLE	Page
1	Disease severity of powdery mildew on wheat cultivars	
	grown at different locations in various regions in Egypt,	
	during season 2013-2014.	37
2	Image transmission electron microscopy (TEM) of silicon	
	and titanium nanoparticles bio-synthesized by three	
	Trichoderma spp. Isolates	39
3	Image transmission electron microscopy (TEM) of silicon	
	and titanium nanoparticles bio-synthesized by six	
	antagonistic bacteria	41
4	Efficacy of different Trichoderma spp. isolates on the	
	reduction of disease severity of powdery mildew in wheat	
	plants (cv. Misr-1) under greenhouse conditions	46
5	Efficacy of various antagonistic bacteria on the reduction of	
	disease severity of powdery mildew in wheat plants (Misr-1	
	cv.) under greenhouse conditions	48
6	Efficacy of nano silicon particles (SiNPs), bio-synthesized	
	by some fungal bioagent on the reduction of disease severity	
	of powdery mildew in wheat plants (Misr-1, cv.) under	
	greenhouse conditions	49
7	Efficacy of nano silicon particles (SiNPs), bio-synthesized	
	by various antagonistic bacteria on the reduction of disease	
	severity of powdery mildew in wheat plants (Misr-1, cv.)	
	under greenhouse conditions	52
8	Efficacy of nano titanium particles (TiNPs), bio-synthesized	
	by some fungal bioagent on the reduction of disease severity	
	of powdery mildew in wheat plants (Misr-1, cv.) under	
	greenhouse conditions	53