

Coloration with Natural dye of some Fabrics and using TiO₂ to impart Self-Cleaning property using Microwave Irradiation

A Thesis submitted as a partial fulfillment of requirements for the degree of master of science

(B. Sc. 2013)

Presented by

Martina Atef Rasheed

Under supervision

Prof. Dr. Ahmed Ismail Hashem

Prof. Dr. Karima Mohamed Mounir Haggag

Prof. Dr. Naglaa Sayed Abd El-Hamid El-Shemy

Coloration with Natural dye of some Fabrics and using TiO₂ to impart Self-Cleaning property using Microwave Irradiation

A Thesis for M. Sc. Degree in Chemistry

(B. Sc. 2013)

Presented by

Martina Atef Rasheed

Department of Chemistry

Faculty of Science

Ain Shams University

Cairo, Egypt

2018

Coloration with Natural dye of some Fabrics and using TiO₂ to impart Self-Cleaning property using Microwave Irradiation

A Thesis for M. Sc. Degree in Chemistry

(B. Sc. 2013)

Presented by Martina Atef Rasheed

Thesis Advisors	Thesis Approved
Prof. Dr.Ahmed Ismail Hashem	
Professor of Organic Chemistry, Faculty of	•••••
Science, Ain Shams University.	
Prof. Dr.Karima Mohamed Mounir Haggag	
Researcher prof. of Chemistry and Textile Technologies	ogy
at National Research Center.	
Prof.Dr.Naglaa Sayed Abd El-Hamid El-She	my
Researcher prof. of Chemistry And Dye	ing
Technology at National Research Center	_

Head of Chemistry Department

Prof. Dr. Ibrahim H. A. Badr

<u>Acknowledgment</u>

First of all, thanks to <u>Allah</u> for helping me to accomplish this work.

I would like to present my great thanks to my supervisor Prof. Dr. Ahmed Ismail Hashem, Professor of Organic Chemistry, Faculty of Science, Ain Shams University; for his guidance, continuous interest, moral support and encouragement. It was really a great opportunity for me to study under his supervision that I could learn a lot of things in the organic synthesis.

Also, I would like to express my sincere gratitude to

Prof. Dr. Karima Mohamed Mounir Haggag, Researcher professor of chemistry and Textile technology at National Research Centre; to follow the progress of the work with keen interest and guidance.

Also, I give my thanks and regards to Prof. Dr. Naglaa Sayed Abd El-Hamid El-Shemy, Researcher professor of Chemistry and Textile Technology at National Research Centre; for her generous supervision and continuous encouragement.

Finally, I would like to express my appreciation to my family, my friends, my colleagues in the Chemistry Department and all people who helped me to finish this work.

List of Abbreviations

ASTM: American Standard Test Method

CI : Color Index.

CIE : Commission Internationale de l'Eclairage.

EDX: Energy Dispersive X-Ray Analysis.

IMS: Industrial Microwave Systems

MW: Microwave Irradiation.

NPs: Nano Particles.

RF: Radio Frequency.

SEM: Scanning Electron Microscopy.

SMA: Sodium Mercaptoacetic Acid.

TEM: Transmission Electron Microscopy.

UHF: Ultra High Frequency.

UV : Ultraviolet radiation.

VHF: Very High Frequency.

WB: Waterbath.

WOF: Weight of Fabric.

Contents

	Page
(Acknowledgment)	
English Summary	I
Introduction	1
Microwave as a Green Technology	1
Microwave interaction	6
Microwave Fundamentals	9
Microwave generators	11
• Microwave Irradiation vis-a-vis to Conventional	
Thermal Heating	12
Microwave Advantages	13
Microwave Disadvantages	14
Textile Dyeing	15
• Dyes	15
Dyes classification	25
Natural Dyes	39
• Mordants	42
• Titanium dioxide (TiO ₂)	48
Experimental	49
• Materials	49
• Experimental Methods	50
Dyeing Methods	50
• Synthesis of TiO ₂ Nano particles (TiO ₂ NPs) via	
MW Irradiation	55

Measurements	57
Results and discussion	
Part 1	70
Part 2	87
Part 3	111
References	131
Arabic Summary	Í

List of Tables

Table
Table 1. Main interactions of electromagnetic radiation with
matter
Table 2: Colors that can be seen when absorbing significant
wavelengths of white light when falling on the textiles
surface
Table 3: Main differences between Dyes and pigments
Table 4: Some of chromophoric groups in organic dyes
Table 5: The characteristics of some popular unconjugated
chromophores
Table 6: Chemical classes of dyes known in the CI
Table 7: Effect of simultaneous extracted dye amount on color
strength (K/S) of different colorant fabrics
Table 8: Effect of pre extracted dye amount on color strength (K/S)
of different colorant fabrics
Table 9: Lightness (L*), Redness-Greenness Value (a*), Yellowness-
Blueness Value (b*), and (ΔE) of wool, silk, and
wool/polyester blend fabrics coloured with safflower yellow
colorant simultaneously at different concentrations and
different temperatures using MW irradiation
Table 10: Lightness (L^*) , Redness-Greenness Value (a^*) , Yellowness-
Blueness Value (b^*) , and (ΔE) of wool, silk, and
wool/polyester blend fabrics coloured with safflower yellow
colorant simultaneously at different concentrations and
different temperatures using conventional thermal heating
Table 11: CIE Lab coordinates at different extracted dye path pH
Table 12: Effect of mordant (CuSO ₄) on different fabrics by using
different mordanting techniques and different heating
methods

Table13: Effect of mordant (FeSO ₄) on different fabrics by using	
different mordanting technique and different heating	
methods	86
Table14: Effect of mordant (Alum) on different fabrics by using	
different mordanting technique and different heating	
methods	86
Table 15: The values of the constants obtained for pseudo 1 st and 2 nd	
order	94
Table 16: Langmuir and Freundlich isotherm	96
Table 17: Half dyeing time $(t_{1/2})$, partition coefficient (k_p)	98
Table 18: Thermodynamics parameters of dyeing process using	
microwave irradiation	99
Table 19: Thermodynamics parameters of dyeing process using	
conventional thermal heating	99
Table 20: Effect of microwave irradiation and conventional thermal	
heating on shrinkage % of wool, silk, and wool/polyester	
blend fabric	101
Table 21: Effect of microwave irradiation and conventional thermal	
heating on weight loss of wool, silk and wool/polyester	
blend fabric	102
Table 22: Effect of microwave and conventional thermal heating on	
tensile strength and elongation% of wool, silk, and	
wool/polyester blend fabric	103
Table 23: CIE Lab coordinates at different pre- and post-treated	
temperature and time of wool fabrics dyed with extracted	
safflower yellow dye	124
Table 24: Fastness properties of the untreated and TiO ₂ NPs-treated	
dyed wool fabrics	125
Table 25. Antibacterial activity of TiO ₂ NPs-treated wool fabrics	127
Table 26: Self-cleaning % of wool fabrics treated with different	
prepared TiO ₂ NPs	130

List of Figures

Figure	Page
Fig. 1: Different heating mechanisms for conventional thermal (a)	
and microwave (b)	9
Fig. 2: Electromagnetic spectrum and frequencies used in microwave	
processing	10
Fig. 3: The visible region of the electromagnetic spectrum according	
to wavelength as well as corresponding energies	17
Fig. 4: preparation of TiO ₂ nano-particles	56
Fig. 5: Calibration curves of dye extracted from safflower petals	63
Fig. 6: Effect of dye bath pH on the stability of safflower yellow	
colorant dye solution of different fibers	78
Fig. 7: Effect of extracted dye bath temperature on color strength of	
dyed fabrics	80
Fig. 8: Effect of extracted dyeing time on color strength of dyed	
fabrics	81
Fig. 9: Effect of liquor ratio on color strength of dyed fabrics	82
Fig. 10: different mordanting methods	84
Fig. 11: Relative plots of kinetic process for the dyeing of wool, silk,	
and wool/polyester with safflower dye	90
Fig.12: Isotherm curves:(a,c) Langmuir; and (b,d) Freundlich. For the	
dyeing of wool, silk, and wool/polyester with safflower dye	91
Fig. 13: Wool Blank	106
Fig. 14: Wool fiber conventional thermal heating	106
Fig. 15: Wool fiber MW irradiation	107
Fig. 16: Blank silk fiber	107
Fig. 17: Silk fiber conventional thermal heating	108
Fig. 18: Silk fiber MW irradiation	108
Fig. 19: Wool/Polyester fiber blank	109
Fig. 20: Wool/Polyester fiber conventional thermal heating	109