

INVESTIGATION OF MECHANICAL PROPERTIES OF CONCRETE CONTAINING RECYCLED RUBBER FROM WASTE TIRES

By

Ahmed Zaki Saber Zaki

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

INVESTIGATION OF MECHANICAL PROPERTIES OF CONCRETE CONTAINING RECYCLED RUBBER FROM WASTE TIRES

By Ahmed Zaki Saber Zaki

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in **Structural Engineering**

Under the Supervision of

Prof. Dr. Hossam A. Hodhod	Dr. Hatem H. Ibrahim	
Professor of Properties and Strength of Materials	Associate Professor	
Structural Engineering Department	Structural Engineering Department	
Faculty of Engineering, Cairo University	Faculty of Engineering, Cairo University	

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

INVESTIGATION OF MECHANICAL PROPERTIES OF CONCRETE CONTAINING RECYCLED RUBBER FROM WASTE TIRES

By Ahmed Zaki Saber Zaki

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in **Structural Engineering**

Approved by the **Examining Committee**

Prof. Dr. Hossam A. Hodhod (Thesis Main Advisor)

Professor of Properties and Strength of Materials - Structural Engineering Dept. Faculty of Engineering, Cairo University

Prof. Dr. Mohamed M. El-Attar (Internal Examiner)

Professor of Properties and Strength of Materials - Structural Engineering Dept. Faculty of Engineering, Cairo University

Prof. Dr. Mohamed A. Khafaga (External Examiner)

Professor of Properties and Strength of Materials, Housing and Building National Research Center

> FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

Engineer's Name: Ahmed Zaki Saber Zaki

Date of Birth:21/3/1992Nationality:Egyptian

E-mail: eng.ahmedzaky2014@gmail.com

Phone: +201065297276

Address: 38 St. El Nasr, El Ryad City, Ameria,

Cairo, Egypt

Registration Date:1/10/2014Awarding Date:..../2018Degree:Master of ScienceDepartment:Structural Engineering

Supervisors:

Prof. Dr. Hossam A. Hodhod

Dr. Hatem H. Ibrahim

Examiners:

Porf. Hossam A. Hodhod (Thesis main advisor) Prof. Mohamed M. El-Attar (Internal examiner) Prof. Mohamed A. Khafaga (External examiner)

Title of Thesis:

Investigation of Mechanical Properties of Concrete Containing Recycled Rubber from Waste Tires

Key Words:

Mechanical properties; Rubberized concrete; Fine rubber; Coarse rubber; Scrap tires

Summary:

Disposal of tire rubber waste is a major ecological issue around the world. Millions of scrap tires are thrown away every year, discarded or even buried resulting in a very dangerous environmental threat. Burning of these tires was the cheapest and easiest way of disposal, which leads to fire hazards. After burning process, the left powder pollutes surrounding soil. Temperature also rises in the around area and toxic smoke with harmful components which have critical impact on humans, plants and animals. Safest and practical solutions for eliminating scrap tire are the best way, one of them is to utilize this scrap into concrete industry as partial replacer for both natural fine aggregate (FA) and coarse aggregate (CA) forming conventional plain rubberized concrete (PRC). In this study, control mixture and other six rubberized mixes, contained rubber, were prepared with incorporated rubber particles as a partial substituent to each of fine and coarse aggregates at replacement levels of 10, 20 and 30%. In the study presented herein, workability, compressive strength, static modulus of elasticity, tensile strength, flexural strength, flexural toughness, abrasion resistance, impact resistance, bond strength and density of concrete mixes have been assessed. It was found that flexural toughness, abrasion resistance and impact resistance of PRC were increased with the increase of crumb rubber content while consistency, compressive strength, static modulus of elasticity, tensile strength, flexural strength, bond strength and density decreased when referencing to the control mix. The results showed that the optimum replacement percent of FA with fine rubber particles (FRP) was 30%, while for mixes with CA partially replaced by coarse rubber particles (CRP), the optimum replacement percent was 10%.

Acknowledgments

Thanks God for support, guidance and all blessings granted to me.

First and foremost I would like to express my utmost gratitude to Prof. Dr. Hossam Hodhod for his scientific support and constant encouragement to finish my research.

I would like also to extend my gratitude and high appreciation to Dr. Hatem Ibrahim for his guidance and assistance throughout my master.

Furthermore I would like greatly to thank Dr. Mohamed Karam for his patience and valuable support during preparing my experimental program study.

I owe also my thanks to technical staff of materials testing laboratory of Civil Engineering, structural department of Cairo University, for patience and understanding.

Finally, sincere appreciation and warmest thanks go to my parents, sister and brother for continued encouragement and support overall years of my life.

Declaration

Declared that except citation to certain references to other researchers, the work included into this thesis is the result of investigation executed by the author under the supervision of supervisors Prof. Dr. Hossam Hodhod, Professor, Department of Civil Engineering, Cairo University, and Dr. Hatem Ibrahim, Associate Professor, Department of Civil Engineering, Cairo University. This thesis or any part of it has not been submitted before to any other University or Institute for a scientific degree or diploma.

September, 2018 Ahmed Zaki

Table of Contents

ACKNOWLEDGMENTS	I
DECLARATION	II
TABLE OF CONTENTS	III
LIST OF TABLES	V
LIST OF FIGURES	VI
NOMENCLATURE	
ABBREVIATIONS	
ABSTRACT	XI
CHAPTER 1: INTRODUCTION	1
CHAPTER 2 : LITERATURE REVIEW	2
2.1. Introduction	2.
2.2. CLASSIFICATION OF TIRE RUBBER	
2.3. Unit weight	2
2.4. Consistency and Workability	
2.5. MECHANICAL PROPERTIES	8
2.5.1. Compressive Strength	8
2.5.2. Static Modulus of Elasticity	12
2.5.3. Splitting Strength.	14
2.5.4. Flexural Strength	
2.5.5. Flexural Toughness	
2.5.6. Abrasion Resistance	
2.5.7. Impact Resistance	
2.5.8. Bond Strength.	27
CHAPTER 3: LABORATORY TESTING PROGRAM	28
3.1. Introduction	28
3.2. Materials	28
3.3. MIX PROPORTIONS	31
3.4. CONCRETE MIXING	32
3.5. Preparation of Specimens	
3.5.1. Compressive Strength	32
3.5.2. Static Modulus of Elasticity	
3.5.3. Splitting Strength	34
3.5.4. Flexural Strength	35
3.5.5. Flexural Toughness.	
3.5.6. Abrasion Resistance	
3.5.7. Impact Resistance	
3.5.8. Bond Strength (Pull-out strength)	42

CHAPTER 4: EXPERIMENTAL TESTING RESULTS	46
4.1. Introduction	46
4.2. MATERIALS TESTING RESULTS	46
4.3. SLUMP TEST RESULTS	48
4.4. Density Test Results	49
4.5. Compressive Strength Test Results	49
4.6. STATIC MODULUS OF ELASTICITY TEST RESULTS	51
4.7. SPLITTING TENSILE STRENGTH TEST RESULTS	52
4.8. FLEXURAL STRENGTH TEST RESULTS	54
4.9. FLEXURAL TOUGHNESS	55
4.10. ABRASION RESISTANCE TEST RESULTS	56
4.11. IMPACT RESISTANCE	61
4.12. BOND STRENGTH	65
CHAPTER 5: ANALYSIS AND DISCUSSION	74
5.1. Introduction	74
5.2. SLUMP (CONSISTENCY)	74
5.3. Density	75
5.4. Compressive Strength	76
5.5. STATIC MODULUS OF ELASTICITY	78
5.6. SPLITTING STRENGTH	80
5.7. FLEXURAL STRENGTH	82
5.8. FLEXURAL TOUGHNESS	84
5.9. ABRASION RESISTANCE	87
5.10. IMPACT RESISTANCE	90
5.11. BOND STRENGTH	92
CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS	96
6.1. Introduction	96
6.2. Conclusions	96
6.3. RECOMMENDATIONS	97
6.4. FUTURE RESEARCH	98
DEFEDENCES	00

List of Tables

Table 2.1: Values of test results [31]	4
Table 2.2: Fresh rubber concrete properties [39]	8
Table 2.3: Splitting tensile strength [74]	
Table 2.4: Results of flexural tests - coarse aggregates replaced by rubber [48]	18
Table 2.5: Results of flexural tests - fine aggregates replaced by rubber [48]	
Table 2.6: Flexural strength of mixtures [25]	19
Table 2.7: Flexural strength of mixtures [74]	26
Table 2.8: Impact test results [92]	27
Table 3.1: Concrete mix proportions by weight (kg/m ³)	31
Table 3.2: Concrete mix proportions by weight (kg/0.14m ³)	32
Table 4.1: Sieve analysis results for fine and coarse aggregates	46
Table 4.2: Sieve analysis results for fine and coarse rubber	47
Table 4.3: Experimental slump results	48
Table 4.4: Experimental density results for concrete mixtures	49
Table 4.5: Average density calculated for concrete mixes	49
Table 4.6: Experimental compression loads at 7 days age	49
Table 4.7: Experimental compression loads at 28 days age	50
Table 4.8: Average compressive strength calculated for concrete mixes	50
Table 4.9: Av. compressive stress and strain results of mixes with fine rubber	51
Table 4.10: Av. compressive stress and strain results of mixes with coarse rubber	51
Table 4.11: Calculated static modulus of elasticity	52
Table 4.12: Experimental splitting tensile loads at 7 days age	52
Table 4.13: Experimental splitting tensile loads at 28 days age	52
Table 4.14: Average tensile strength calculated for concrete mixes	53
Table 4.15: Experimental flexural ultimate load at 7 days age	
Table 4.16: Experimental flexural ultimate load at 28 days age	54
Table 4.17: Average flexural strength calculated for mixes	54
Table 4.18: Av load and deflection results of mixes with fine rubber	55
Table 4.19: Av. load and deflection results of mixes with coarse rubber	56
Table 4.20: Calculated concrete flexural toughness	56
Table 4.21: Experimental abrasion length at 7 days age	57
Table 4.22: Experimental abrasion length at 28 days age	57
Table 4.23: Average abrasion lengths	
Table 4.24: Initial and final cracking blows obtained from impact test	61
Table 4.25: Initial and failure energy absorbed within impact test	61
Table 4.26: Bonding load and slippage results for mixes with fine rubber	
Table 4.27: Bonding load and slippage results for mixes with coarse rubber	
Table 4.28: Obtained bond strength for concrete mixes	

List of Figures

Figure 2.1: Unit weight of fresh rubberized concrete mixtures [23]	3
Figure 2.2: Effect of rubber content on properties of fresh RPCC mixtures [32]	
Figure 2.3: Bulk density of concretes versus rubber content [33]	
Figure 2.4: Density of the concretes [36]	5
Figure 2.5: Effect of aggregate replacement ratio on slump of rubber concrete [24]	6
Figure 2.6: Slump of fresh rubberized concrete mixtures [23]	
Figure 2.7: Compressive strength of concretes versus rubber content [33]	9
Figure 2.8: Results of 28-day compressive strength test [54]	10
Figure 2.9: Compressive strength test results [64]	10
Figure 2.10: Effect of rubber pre-treatment on concrete compressive strength [49]	11
Figure 2.11: Effect of rubber content on compressive strength of PCC mixes [32]	11
Figure 2.12: Results of modulus of elasticity test [54]	12
Figure 2.13: Compressive modulus test results [64]	13
Figure 2.14: Compressive stress-strain response of rubber-tire concrete [23]	13
Figure 2.15: Variation in the static modulus of the concretes with rubber and silica	
fume contents at w/c: 0.4 [46]	14
Figure 2.16: Tensile Strength for Group 1 Specimens [53]	15
Figure 2.17: Tensile Strength for Group 2 Specimens [53]	15
Figure 2.18: Relationship of splitting-tensile strength to rubber content [73]	
Figure 2.19: Variation in the splitting tensile strength of the concretes with rubber ar	
silica fume contents at w/c: 0.4 [46]	
Figure 2.20: Results of tensile strength test [54]	
Figure 2.21: Results of flexural strength test [64]	
Figure 2.22: 28-day flexural strength of crumb rubber concrete [47]	
Figure 2.23: Fractured beam of fibrous rubber-mortar: as obtained [18]	
Figure 2.24: Experimental load-mid-span deflection response [80]	
Figure 2.25: Typical mode of failure in compression for rubberized mixtures [32]	
Figure 2.26: Evaluation of toughness index [23]	
Figure 2.27: Abrasion resistance of rubberized concrete [82]	
Figure 2.28: Relationship of concrete mass loss and volume content of rubber [83]	
Figure 2.29: Average blows with respect to rubber content [90]	
Figure 2.30: Relationship of flexural toughness index to rubber content [73]	
Figure 3.1: Type of normal Portland cement used in concrete mixtures	
Figure 3.2: Coarse aggregates (dolomite) used in concrete mixtures	
Figure 3.3: Fine aggregates (sand) used in concrete mixtures	
Figure 3.4: Coarse rubber used in concrete mixtures as a partial replacement to nature	
coarse aggregates	
Figure 3.5: Fine rubber used in concrete mixtures as a partial replacement to natural	
fine aggregates	
Figure 3.6: Super plasticizer material used into all prepared concrete mixtures	
Figure 3.7: Set-up for compression test	
Figure 3.8: Set-up for splitting test	
Figure 3.9: Testing of concrete specimens in flexure.	36
Figure 3.10: Generic load deflection curve from flexure loading test describes how	27
flexural toughness of concrete is calculated	37

Figure 3.11: Both photos for 3D Built-up TEKLA Model for the abrasion device in	
preparation to construction phase	38
Figure 3.12: Installing and Setting the abrasion device in a suitable place	39
Figure 3.13: A closed photo shows the concrete specimen during abrasion test	39
Figure 3.14: schematic diagram shows impact test machine	
Figure 3.15: Impact device: (a) before testing concrete specimens (b) during testing	
Concrete specimens	
Figure 3.16: Plastic sleeves at both ends of concrete cylinder	
Figure 3.17: Set-up of reinforcement bar during test	
Figure 3.18: Bond specimen: (a) installing reinforcing steel bar with bottom sleeve	
(b) casting concrete mixture and placing the upper sleeve	44
Figure 3.19: Testing of specimen in bond: (a) Concrete specimen setup before test	
(b) Mechanical dial gauge device used to obtain vertical slippage of ste	1
	44
Figure 3.20: Generic bond stress-slippage curve shows how concrete bond strength i	
evaluated	
Figure 4.1: Particles size distribution of fine and coarse aggregate	
Figure 4.2: Particles size distribution of fine and coarse rubber	
Figure 4.3: Sieves used to obtain particles' distribution of aggregates	
Figure 4.4: Slump of control mix	48
Figure 4.5: Compression test: (a) control concrete specimen before test (b) control	
concrete specimen after test	50
Figure 4.6: Splitting test for control mix: (a) Concrete cylinder before test	
(b) concrete cylinder after test	53
Figure 4.7: Point load flexure test for control mix: (a) beam specimen before test	
(b) beam specimen after test	55
Figure 4.8: Control specimen after abrasion test	58
Figure 4.9: F-10 specimen after abrasion test	58
Figure 4.10: F-20 specimen after abrasion test	59
Figure 4.11: F-30 specimen after abrasion test	
Figure 4.12: C-10 specimen after abrasion test	
Figure 4.13: C-20specimen after abrasion test	
Figure 4.14: C-30 specimen after abrasion test	
Figure 4.15: Control specimen failure after impact test	
Figure 4.16: F-10 specimen failure after impact test	
Figure 4.17: F-20 specimen failure after impact test	
Figure 4.18: F-30 specimen failure after impact test	
Figure 4.19: C-10 specimen failure after impact test	
Figure 4.20: C-20 specimen failure after impact test	
•	
Figure 4.21: C-30 specimen failure after impact test	
Figure 4.22: Control specimen failure after bond test	
Figure 4.23: F-10 specimen failure after bond test	
Figure 4.24: F-20 specimen failure after bond test	
Figure 4.25: F-30 specimen failure after bond test	
Figure 4.26: C-10 specimen failure after bond test	
Figure 4.27: C-20 specimen failure after bond test	
Figure 4.28: C-30 specimen failure after bond test	
Figure 5.1: Slump versus percent replacement by fine and coarse rubber	
Figure 5.2: Density versus percent replacement by fine and coarse rubber	75

Figure 5.3: Compressive strength at 7 days versus percent replacement by fine and
coarse rubber76
Figure 5.4: Compressive strength at 28 days versus percent replacement by fine and
coarse rubber77
Figure 5.5: Stress versus Strain for mixes replaced by fine rubber
Figure 5.6: Stress versus Strain for mixes replaced by coarse rubber79
Figure 5.7: Static Young's Modulus versus percent replacement by fine and coarse
rubber80
Figure 5.8: Splitting strength at 7 days versus percent replacement by fine and coarse
rubber81
Figure 5.9: Splitting strength at 28 days versus percent replacement by fine and coarse
rubber81
Figure 5.10: Flexural strength at 7 days versus percent replacement by fine and coarse
rubber83
Figure 5.11: Flexural strength at 28 days versus percent replacement by fine and coarse
rubber83
Figure 5.12: Applied vertical mid-point load versus middle beam deflection for mixes
replaced by fine rubber85
Figure 5.13: Applied vertical mid-point load versus middle beam deflection for mixes
replaced by coarse rubber86
Figure 5.14: Flexural toughness versus percent replacement by fine and coarse rubber
87
Figure 5.15: Abrasion resistance at 7 days versus percent replacement by fine and
coarse rubber
Figure 5.16: Abrasion resistance at 28 days versus percent replacement by fine and
coarse rubber89
Figure 5.17: First cracking impact energy versus percent replacement by fine and
coarse rubber90
Figure 5.18: Failure cracking impact energy versus percent replacement by fine and
coarse rubber91
Figure 5.19: Difference between initial and failure cracking numbers of blows versus
percent replacement by fine and coarse rubber92
Figure 5.20: Local bond stresses versus slippage for mixes replaced by fine rubber93
Figure 5.21: Local bond stresses versus slippage for mixes replaced by coarse rubber 94
Figure 5.22: Bond strength versus percent replacement by fine and coarse rubber95

Nomenclature

σ_c	Concrete compressive strength, kgf/cm ²
P_c	Ultimate compressive load or compressive load at failure, kgf
A_c	Loaded compressed average area, cm ²
σ_{st}	Splitting tensile strength, kgf/cm ²
P_{st}	Maximum splitting load or splitting load at failure, kgf
d_{cy}	Measured diameter of cylinder specimen, cm
l_{cy}	Measured length of cylinder specimen, cm
$\sigma_{\!ft}$	Concrete flexural tensile strength, kgf/cm ²
M_f	Flexural Moment of resistance of concrete section, kgf.cm
S_b	Concrete beam elastic modulus, cm ⁴
P_f	Load at which beam was broken in flexure, kgf
$b_{b}^{'}$	Measured width of beam specimen, cm
d_b°	Measured depth of beam specimen, cm
$l_b^{\ \ \ \ \ \ \ }$	Measured supporting length of beam specimen, cm
E_c	Concrete static Young's modulus, kgf/cm ²
σ_2	Stress corresponding to one-third of concrete characteristic strength,
	kgf/cm ²
σ_1	Constant stress equals 5 kgf/cm ²
\mathcal{E}_2	Longitudinal compressive strain corresponding to one-third of concrete
	characteristic strength
ε_1	Longitudinal compressive strain corresponding to 5 kgf/cm ² stress
E_{ft}	Concrete flexural toughness, kgf.mm
E_{fti}	Concrete flexural toughness at each load increment, kgf.mm
P_i, P_{i-1}	Successive applied loads on concrete beam specimen, kgf
Δ_i, Δ_{i-1}	Successive corresponding vertical beam deflections due to P_i and P_{i-1} loads, mm
N_1	Number of blows, of drop weight, which caused first visible crack
N_2	Number of blows, of drop weight, which caused specimen failure
U_{im}	Impact energy absorbed by concrete specimen, kg.mm
n_{im}	Number of blows of impacted specimens
m_{im}	Dropping mass at impact test, kg
V_{im}	Velocity of dropped mass at impact, mm/s
H_{im}	Drop down height at impact, mm
a_{im}	Acceleration of dropped mass at impact, mm/s^2
t_{im}	Required time for mass to drop on concrete specimen, s
W_{im}	Weight of dropped hammer at impact, kgf
g	Constant ground acceleration, mm/s^2
σ_{bo}	Developed concrete bond strength, kgf/cm ²
P_{bo}	Ultimate pull-out load, kgf
A_s	Loaded steel average surface area at bonding test, cm ²
D_{av}	Average diameter of steel bar, cm
$L_{\scriptscriptstyle S}$	Steel reinforcing bar embedded length, cm

Abbreviations

PC Plain (conventional) Concrete
PRC Plain Rubberized Concrete

FA Fine aggregate CA Coarse aggregate

FRP Fine rubber particles as a substitution to fine aggregate (sand)

CRP Coarse rubber particles as a substitution to coarse aggregate (dolomite)

F-R_n% Fine rubber replacement with n value instead of fine aggregates C-R_n% Coarse rubber replacement with n value instead of coarse aggregates

SP Super plasticizer w/c Water/ cement ratio

ASTM American Society for Testing and Materials

BS British Standards

HRWR High range water reducer ACI American Concrete Institute

Av Algebraic average

EPA Environmental Protection Agency, United States

fib International federation of concrete