STUDIES ON UTILIZATION OF SOME DAIRY INDUSTERIAL WASTES AND USING GAMMA IRRADIATION FOR MICROBIAL POLYSACCHARIDES PRODUCTION

By

WALAA SAID HENDAWY MANSOUR

B.Sc. Agric. Sc. (Dairy Science and Technology), Ain Shams Univ. (1999) M.Sc. Agric. Sc. (Dairy Science and Technology), Ain Shams Univ. (2008)

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Degree of

in
Agricultural Sciences
(Dairy Science and Technology)

Food Science Department
Faculty of Agriculture
Ain Shams University

Approval Sheet

STUDIES ON UTILIZATION OF SOME DAIRY INDUSTERIAL WASTES AND USING GAMMA IRRADIATION FOR MICROBIAL POLYSACCHARIDES PRODUCTION

By

WALAA SAID HENDAWY MANSOUR

B.Sc. Agric. Sc. (Dairy Science and Technology), Ain Shams Univ. (1999) M.Sc. Agric. Sc. (Dairy Science and Technology), Ain Shams Univ. (2008)

This thesis for Ph.D. degree has been approved by:

Dr	Nayra Shaker Mehanna
	Researcher Prof. of Dairy and Food Microbiology, National
	Research Center.
Dr	Abd El-Monem El-Badawy Hagras
	Prof. Emeritus of Dairy Science & Technology. Fac. Agric., Ain
	Shams University.
Dr	Youssef Morsy El-Kenany
	Prof. Emeritus of Dairy Science & Technology. Fac. Agric., Ain
	Shams University.

Date of examination: 17/2/2019

STUDIES ON UTILIZATION OF SOME DAIRY INDUSTERIAL WASTES AND USING GAMMA IRRADIATION FOR MICROBIAL POLYSACCHARIDES PRODUCTION

By

WALAA SAID HENDAWY MANSOUR

B.Sc. Agric. Sc. (Dairy Science and Technology), Ain Shams Univ. (1999) M.Sc. Agric. Sc. (Dairy Science and Technology), Ain Shams Univ. (2008)

Under the supervision of:

Dr. Youssef Morsy El-Kenany

Prof. Emeritus of Dairy Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University (Principal Supervision).

Dr. Osama Ibrahim El-Betawy

Associate Prof. of Dairy Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University.

Dr. Tarek Mahmoud El-Mongy

Prof of Irradiation Microbiology, Department of Microbiology, National Center for Radiation Research and Technology (NCRRT), Nasr City, Cairo.

ABSTRACT

Walaa Said Hendawy Mansour "Studies On Utilization Of Some Dairy Industerial Wastes And Using Gamma Irradiation For Microbial Polysaccharides Production". Unpublished Doctor Philosophy of Science Thesis, Ain Shams University, Faculty of Agriculture, Food Science Department, 2019.

Using sweet whey as a microbial production medium for exopolysaccharides (EPS) presents a Cleaner Production Opportunity (CPO) to create value-added products and protect the environment. Alginates are important polysaccharides with many applications in the food, pharmaceutical, textiles and paper industries. Different bacterial strains such as species of Azotobacter have been reported since long to produce alginate. The bacterial alginate has better qualitative properties, so it may be sold at higher price as compared to that obtained from Seaweed alginate. Therefore, this investigation was designed to study the production of alginate by bacterial fermentation.

In this study, a number of 28 *Azotobacter* isolates were isolated from different soil samples and tested for alginate production. Only two isolates were selected as high efficient alginate producing bacteria and completely identified as *Azotobacter vinelandii* MH249041 and *Azotobacter chrococcum* MH249629. In a series of experiments, modified **Clementi** *et al* (1995) medium and whey production medium (WPM) were recommended, with incubation at 32and 30 °C for 3 days for alginate production by *Azotobacter* strains in shaking flasks used as a batch culture.

In second culture (WPM), alginate concentration increased by *Azotobacter chrococcum* MH249629 than by *Azotobacter vinelandii* MH249041. The calculated D₁₀-values of *Azotobacter vinelandii* and *Azotobacter chrococcum* were found to be 0.29, 0.33 kGy, respectively.

Gamma irradiation of *Azotobacter vinelandii* and *Azotobacter chrococcum* at the dose of 0.5 KGY, increased alginate concentration and alginate yield for both strains in (WPM).

using microbial alginate produces from *Azotobacter vinelandii* and *Azotobacter chrococcum* as stabilizer in ice cream manufacture had no significant (P<0.05) differences in physiochemical and sensory properties of ice cream product compared with using CMC or commercial alginate as stabilizer.

These results suggest that sweet whey as a valuable economic medium for microbial production of alginate, which could be used to improve ice- cream quality.

Key Words: Alginate, A. *vinelandii*, A. *chrococcum*, shake flasks, batch culture, alginate parameters, alginate production and medium composition.

ACNOWLEDGMENT

I am deeply thankful to **ALLAH** by the grace of whom this work was done.

Deepest gratitude to Principal Supervisor **Prof. Dr. Mohammad Nabil I. EL-Magdoub,** Professor Emeritus of Dairy Science and Technology, Fac. of Agric., Ain Shams University, for suggesting the research problem, close supervision and valuable advices during the preparation of the manuscript.

My deep gratitude and sincere thanks to **Prof. Dr. Youssef Morsy El-Kenany** Professor Emeritus of Dairy Science and Technology,
Fac. of Agric., Ain Shams University, for supervising the present work,
his effort in constructive criticism and valuable critical reading and
revising the manuscript.

My grateful thanks are extended to **Dr. Osama I. EL-Betawy** Associate Professor of Dairy Science and Technology, Fac. of Agric., Ain Shams University, for his supervision and precious advices throughout the study.

My grateful thanks are extended to **Prof. Dr. Tarek. Mahmoud EL-Mongy** Professor of Irradiation Microbiology, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, for his supervision and precious advices throughout the study.

Many thanks to **Prof. Dr. Samir Ahmed Meligy** Professor of Microbiology, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, for his valuable guidance, direct supervision, continuous support during the stages of this work and valuable revision.

I am really grateful to **Dr. Amany Badr Abd EL-Aziz** Assistant Professor of Microbiology, National Center for Radiation Research and Technology, Atomic Energy Authority, for her supervision as well as his

great active and fruitful advices throughout different stages of this research.

Deepest thanks are extended to all my family for their continuous help, encouragement and merciful beautiful patience.

Finally, my great respect and gratitude to everyone in the Food Science Department, Fac. Agric., Ain Shams University and the Microbiology Department, National Center for Radiation Research and Technology, Atomic Energy Authority who participated in completion of this work.

Contents

	Page
LIST OF TABLES	VIII
LIST OF FIGURES	XIII
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. Microbial fermentation of cheese whey	3
2.2. Microbial production of alginate	5
2.2.1. Azotobacteriaceae group	5
2.3. Structure and properties of alginate	6
2.3.1. Chemical composition	6
2.3.2. Physical properties	7
a) Solubility	7
b) Selective ion binding	8
c) Rheology	8
2.3.3.Alginate as a gel	8
2.4. Advantage of microbial alginate	9
2.5. Biological role of alginate production	10
2.6. Biosynthetic pathway of the alginate in relation to bacterial	12
growth	
2.7.Factors affecting alginate production	15
2.7.1.Nutritional factors	15
a) Carbon sources	15
b) Nitrogen sources	17
c) Phosphate and other minerals	18
2.7.2. Environmental factors	20
a) Temperature	20

b) pH	21
c) Oxygen requirements	22
d) Agitation	25
e) Osmolality and dehydration	27
f) Age and volume of inoculum	27
2.8.Fermentation processes	27
2.9. Irradiation techniques	30
2.9.1. Types of Radiation	30
2.9.2. Units of gamma radiation	31
2.9.3. Effect of ionizing energy on microorganisms	31
2.9.4. Effect of gamma radiation on the activity of microorganisms	33
2.10. Alginate Recovery	33
2.11. Alginate applications	34
2.11.1. Alginate gels in biotechnology	35
2.11.2. Textile industry	35
2.11.3.Paper industry	35
2.11.4. Welding rods	35
2.11.5. Binders for fish feed	36
2.11.6. Release agents	36
2.11.7. Water treatment	36
2.11.8. Potential biomedical and pharmaceutical alginate	36
applications	
2.11.9. Foods industry	37
2.12. Bacterial identification based on 16s rRNA gene sequencing	38
3. MATERIALS AND METHODS	41
3.1. Materials	41
3.1.1. Soil samples	41
3.1.2. Cultivation media used	41

3.1.3. Sweet whey	43
3.1.4. Production of ice cream using microbial alginate produced fro	43
isolated Azotobacter spp.	
3.1.5. Gamma irradiation	43
3.2.Experimental procedures	44
3.2.1 Isolation of alginate producing bacteria	44
3.2.2.Maintenance of cultures	44
3.2.3. Standard inoculum	44
3.2.4. Identification of alginate producing bacteria	44
1) Standard Buffers	44
2) Standard Buffer Recipes	45
3) DNA Loading Dye (6X) (Store at 4°C)	45
4) Extraction of genomic DNA	45
5) 16s rRNA gene amplification, sequencing and phylogenetic	46
analysis	
7) Analysis of amplified PCR product	46
8) Amplified PCR amplicons' sequencing	46
3.2.5. Screening of alginate producing isolates	46
3.2.6. Evaluation of sweet whey for alginate production by	47
Azotobacter strains	
3.2.7. Growth curve	47
3.2.8. Screening of alginate producing isolates	48
3.2.9.Optimization of fermentation processes for alginate	48
production by Azotobacter strains	
3.2.9.1. Effect of nutritional conditions	48
a) Carbon sources	48
b) Nitrogen sources	49
c) Different phosphate concentration	49

3.2.9.2. Effect of environmental conditions	49
a) Initial pH values	49
b) Agitation speed	49
c) Inoculum volume	49
d) Incubation Temperature	50
f) Fermentation period	50
3.2.10. Effect of gamma irradiation on EPS production	50
Azotobacter strains	
3.2.10.1. Irradiation process	50
3.2.10.2. D10-Value	51
3.2.11. Properties of alginate	51
3.2.11.1. Lipid emulsifying test	51
3.2.11.2. Flocculating test	51
3.2.11.3. Solubility	51
3.2.12. Production of ice cream using microbial alginate produc	52
from isolated Azotobacter strains.	
3.3. Methods of analysis	53
3.3.1. HPLC analysis	53
3.3.2. Fourier Transform Infrared (FT – IR) analysis	53
3.3.3 Alginate determination	54
3.3.3.1. Alginate determination in Clementi medium	54
3.3.3.2.Alginate determination in whey production medium	54
3.3.4. pH	54
3.3.5. Growth and biological activity parameter:	54
3.3.5.1. The specific growth rate (μ) and doubling time (td)	54
3.3.5.2. Number of generations	55
3.3.5.3. Alginate Yield (%)	55
3.3.5.4. Alginate productivity (P)	55

3.3.5.5. D10 value	55
3.3.6. Chemical analysis of ice-cream	56
3.3.7.Physical analysis of ice-cream	56
3.3.8. Rheological analysis	56
3.3.9. Sensory evaluation	57
3.3.10. Statistical analysis	57
4. RESULT AND DISCUSSION	58
4.1.Isolation and selection of alginate producing bacteria	58
4.2. Selection of suitable medium for alginate production	58
4.3. Molecular Identification of the isolated bacterial strains	65
4.3.1. Phylogenetic analysis	69
4.4. Alginate production by Azotobacter vinelandii, Azotobacter	71
chrococcum on Clementi et al (1995) medium	
4.4.1. Effect of some nutritional requirements	71
a) Carbon sources	71
b) sucrose concentrations	74
c) Nitrogen sources	77
d) Sodium phosphate concentrations	84
4.4.2. Effect of some environmental factors	87
a) Initial pH	87
b) Inoculum size	91
c) Agitation speed	93
d) Incubation temperature:	96
e) Fermentation time	98
4.5. Alginate production by Azotobacter vinelandii and	102
Azotobacter chrococcum in whey medium.	
4.5.1. Effect of some nutritional requirements in whey production	103
medium	

a) Carbon source	103
b) Nitrogen source	107
c) Sodium phosphate concentration	115
4.5.2. Effect of some environmental factors in whey production	118
medium	
a) Initial pH	118
b) Inoculum size	121
c) Agitation speed	125
d) Incubation temperature	127
e) Fermentation time	130
4.6. Effect of gamma irradiation on survival and productivity of	133
alginate producing strains.	
4.6.1. Strains survival	134
4.6.2. Strains productivity	136
4.7. Some alginate properties	139
4.7.1. Emulsifying capacity of alginate produced	139
4.7.2. Flocculating effect of alginate	140
4.7.3. Solubility of alginate	141
4.7.4. HPLC analysis of alginate	141
4.7.5. FT-IR analysis of alginate	143
4.8.Production of ice cream using microbial alginate produced from isolated <i>Azotobacter spp</i> .	146
4.8.1. Physicochemical properties of ice cream mixes made using	146
different types of stabilizer	
4.8.1.1. Total solids, fat, protein and ash contents	146
4.8.1.2 pH value and Weight per gallon	148
4.8.1.3. Freezing point	149
4.8.1.4. Specific gravity of ice cream mixes	150
4.8.2. Rheological Behavior	151

VII

4.8.2.1. Viscosity	151
4.8.3. Physicochemical properties of ice cream product made using different types of stabilizer	155
4.8.3.1. Specific gravity and weight per gallon (kg)	155
4.8.3.2. Overrun	157
4.8.3.3. Melting resistance	158
4.8.3.4. Sensory properties	159
5. SUMMARY AND CONCLUSION	162
6. REFERENCES	169
7. ARABIC SUMMARY	

VIII

LIST OF TABLES

Гable		Page
1	The ice cream formulas using different types of	
	stabilizer (g/Kg).	54
2	Soil samples utilized for the isolation of Azotobacter.	61
3	Alginate and biomass production by different	
	Azotobacter isolates.	63
4	Alginate production and cell dry weight by the most	
	efficient alginate producing Azotobacter isolates on	
	different productive media.	65
5	Accession number for rDNA genes description,	
	organism name and the calculated e-value of	
	homologous genes to Azotobacter vinelandii strains	
	sequence identified using specialized BLAST search	
	programs.	69
6	Accession number for rRNA genes description,	
	organism name and the calculated e-value of	
	homologous genes to Azotobacter chroococcum	
	strains sequence identified using specialized BLAST	
	search programs:	70
7	Effect of different carbon sources on alginate	
	.production by Azotobacter vinelandii	73
8	Effect of different carbon sources on alginate	
	production by Azotobacter chroococcum.	74
9	Effect of different sucrose concentrations on alginate	
	production by Azotobacter vinelandii.	75
10	Effect of different sucrose concentrations on alginate	
	production by Azotobacter chroococcum.	76
11	Effect of different nitrogen sources on alginate	
	production by Azotobacter vinelandii.	78
12	Effect of different nitrogen sources on alginate	
	production by Azotobacter chroococcum.	79