Depressed Skull Fracture over Cranial Venous Sinuses

A Systematic Review

Submitted for partial fulfillment of the requirement of the Master Degree in Neurosurgery

By

Wael A. H. Abuoun

M.B.B.S.; Dow Medical College (D.M.C.), Dow University of Health Sciences (D.U.H.S.), Karachi, Pakistan

Under Supervision of

Prof. Dr. Hussein El Sayed Moharam

Professor of Neurosurgery
Faculty of Medicine, Ain Shams University

Prof. Dr. Hasan Mohammad Jalalod'din

Associate Professor of Neurosurgery Faculty of Medicine, Ain Shams University

Dr. Sameh Mohamed Hefni

Lecturer of Neurosurgery
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University

سورة البقرة الآية: ٣٢

﴿ إِنَّا اللَّهُ مِنْ اللَّا مِنْ اللَّهُ مِنْ اللَّهُ مِنْ اللَّهُ مِنْ اللَّهُ مِنْ اللَّا مِنْ اللَّهُ مِنْ اللَّهُ مِنْ اللَّهُ مِنْ اللَّهُ مِنْ اللَّلَّمُ مِنْ اللَّهُ مِنْ اللَّا مِنْ اللَّهُ مِنْ اللَّا لِمُعْلِمُ اللَّهُ مِنْ اللَّهُ مِنْ اللَّهُ مِنْ اللّ

गापन हैंगाना रिनेट नरिने

First and foremost, I feel always indebted to Almighty Allah, the Most Beneficent and Merciful for giving me this opportunity, the strength and the patience to complete my dissertation after all the challenges and difficulties. Without His blessings, this achievement would not have been possible.

I would like to express my sincere and deep gratitude; to my supervisor **Prof. Dr. Hussein Moharam** (Professor of Neurosurgery). Words cannot express my indebtedness for his kind help, cooperation, and valuable suggestions. It is a great honor to work under his guidance and supervision. He has been there providing his heartfelt support all times. He is always the best to represent the professorship scientifically and morally.

Moreover, I would like to express my thanks and appreciation to **Prof. Dr. Hasan Jalalod'din,** (Associate Professor of Neurosurgery) for his supervision, continuous guidance, monitoring, cooperation and helpful instructions. He was keen on forward progress and to provide valuable information.

In addition, I am very grateful to **Dr. Sameh Hefni**, (Lecturer of Neurosurgery) for his valuable help and keen interest in the accomplishment of this work. He kept continuous guidance and support to present the work as the best it should be.

Many thanks to my seniors and colleagues, who taught me the basics of neurosurgery.

I would like to dedicate this work to my beloved country, the state of Palestine, and it's only recognized capital, Jerusalem.

To the souls of the **Palestinian Martyrs**, practically to my brother Ahmed "1973-1989". Who scarified themselves to defend the holy land of Palestine, and perfumed the ground with their incense blood.

To Egypt and it's wonderful and kind people.

Dear family in Palestine, my father and mother, my beloved wife and sons, my brothers and sisters, you deserve special mention for your inseparable support and prayers. Words fail to express my appreciation.

Thank you all

Wael A. H. Abuoun

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iii
List of Charts	v
Introduction	1
• Aim of the Work	3
• Objectives	3
Review of Literature	
Anatomy of The Head	4
Pathophysiology of Head Injury	15
Head Injury Workup	28
Clinical Presentation	36
Radiological Studies	39
Management of Head Injury	47
Medical care	48
Surgical Intervention	52
• Complications	57
• Prognosis	58
Systematic Review	59
Methodology	59

Subject	Page No.
Results	63
Discussion	74
Conclusion	89
Summary	91
References	93
Arabic Summary	

List of Abbreviations

Abbr.		Full-term
ABC	:	Airway, Breathing, Circulation
ATLS	:	Advanced Trauma Life Support
BBB	:	Blood Brain Barrier
BIH	:	Benign Intracranial Hypertension
CBF	:	Cerebral Blood Flow
\mathbf{CBV}	:	Cerebral Blood Volume
CNS	:	Central Nervous System
CPP	:	Cerebral Perfusion Pressure
CSF	:	Cerebro Spinal Fluid
\mathbf{CT}	:	Computed Tomography
CTA	:	Computed Tomography Angiography
CVT	:	Cerebral Venous Thrombosis
CNS	:	Central Nervous System
DC	:	Decompressive Craniectomy
DAI	:	Diffuse Axonal Injury
DSF	:	Depressed Skull Fracture
EVD	:	External Ventricular Device
GCS	:	Glasgow Coma Score
HCP	:	Hydrocephalus
HI	:	Head Injury
ICH	:	Intra Cranial Hypertension
ICP	:	Intra Cranial Pressure
LP	:	Lumbar Puncture
MAP	:	Mean Arterial Pressure
MRI	:	Magnatic Resonance Imaging
MRV	:	Magnatic Resonance Venography
PBI	:	Penetrating Brain Injury
PVI	:	Pressure Volume Index
RTA	:	Road Traffic Accident
SSS	:	Superior Sagittal Sinus
TBI	:	Traumatic Brain Injury
TOF	:	Time Of Flight
VST	:	Venous Sinus Thrombosis
WI	:	Weighted Images

List of Tables

Table No.	. Title	Page No.
Table (1) :	The adult GCS	30
` ′	Studies description: (Prospective, and Case series)	-
Table (3) : 3	Studies description: (Case reports).	64
Table (4) : 1	Population description	65
Table (5) : 3	Surgical cases	69
Table (6) :	Conservative cases	71
	Studies described the need of medication	•
Table (8) :	Clinical presentation	75
Table (9) : 1	Localization of injured venous sinu	ises 77
Table (10): 5	Sinus repair modalities	79
Table (11): S	Surgical outcomes	82

List of Figures

Figure No	. Title Page No.
Figure (1):	Lateral view of the adult skull 4
Figure (2):	Superior view of the adult skull4
Figure (3):	Posterior view of the adult skull5
Figure (4):	Layers covering the brain (the meninges of the brain)
Figure (5):	Human brain dura mater 7
Figure (6):	Blood flow through the dural venous sinuses9
Figure (7) :	Brain venous system, radiological anatomy9
Figure (8):	Section across the top of the skull 12
Figure (9):	Linear skull fracture on skull x-ray 20
Figure (10):	Depressed skull fracture on skull x-ray 20
Figure (11):	Compound skull fracture
Figure (12):	Depressed skull fracture of the frontal bone crossing the midline over SSS, with underlying hematoma, and massive infarction
Figure (13):	Diagram illustrate the Monro-Kellie hypothesis
Figure (14):	Diagram illustrate the ICP monitoring devices (Different types)
Figure (15):	Diagram illustrate the ICP monitoring (Codman EVD setup)

Figure No	. Title	Page No.
Figure (16):	CT brain (a&c) axial & sagittal v 3D reconstruction images showing skull defect	g the site of
Figure (17):	Cord sign, radiological imaging venous thrombosis	
Figure (18):	Dense triangle sign, radiological cerebral venous thrombosis	
Figure (19):	Empty delta sign, Radiological cerebral venous thrombosis	
Figure (20):	Multisection CT Venography of Sinuses	
Figure (21):	MRI, T2-weighted image	45
Figure (22):	MRV (a–c) showing non-visualizeright transverse and sigmoid sinute.	us (arrow in
Figure (23):	Bilateral infarction & edema of thrombosis	
Figure (24):	Sagittal CT-images in a patient w parasagittal hemorrhage due to the the SSS	rombosis of

List of Charts

Chart No	. Title	Page No.
Chart (1):	Level of evidence and stud studies included in the system	C
Chart (2):	Gender distribution	66
Chart (3):	Mean age of the studies systematic review	
Chart (4):	Mechanism of trauma	67
Chart (5):	Localization of depressed fra sinuses	
Chart (6):	Types of depressed fracture	68
Chart (7) :	Types of Intervention	68
Chart (8) :	Surgical outcomes	70
Chart (9) :	Conservative outcomes	72
Chart (10):	The final results	73

Introduction

I. Rationale and justification of the study

Trauma in general is a serious problem worldwide. Head trauma continues to be a nightmare, not only for the public but also for the neurosurgeons. It remains one of the most common causes of morbidity and mortality particularly, in developing countries. Commonly seen after road traffic accidents, fall from height, physical attacks and other injuries (Jennett, 1996).

Skull fractures simply classified into linear or depressed types. Linear fracture is the most common type. This type is usually managed none surgically. On the other hand, depressed fractures can be either simple or compound, (closed or open). Most of the depressed fractures are compound fractures. It represents 75 to 90% of these cases. It is one of the most common condition needing emergency operation, because of the high risks of infections. This type of fractures generally accepted to be managed surgically, while the closed type is treated conservatively. Unless there is a significant cosmetic deformity, underlying hematoma or venous sinus injury (Poon et al., 2007).

Significant dural sinus injury occurs in 1.5 to 5% of all head injuries. The superior sagittal sinus (SSS) is the most commonly affected location. It accounts for 70 to 80% of these cases (**Behera et al., 2015**). Its anterior and central part are involved in 66% of the cases, while the posterior part reported in 8% only. Injuries to the transverse sinus represent 18% of all cases. Furthermore, the combined injuries of different dural sinuses account for 8% only (**Meier et al., 1992**).

Depressed skull fractures (DSF) overlying a venous sinus represent 11 to 18% of the cases (LeFeuvre *et al.*, 2004). Which may lead to increase in the intracranial pressure (ICP) (Donovan, 2005).

This increase in ICP either from sinus thrombosis and decrease absorption of cerebrospinal fluid (CSF), or from sinus compression and stenosis which leads to venous hypertension (Donovan, 2005).

Therefore, the clinical manifestations range from headache only to seizures, confusion with or without neurologic deficits and death (Ozevrena & Cevizb, 2016). Whereas the visual field defects, papilledema, and finally visual disturbance reported in other cases (Yokota et al., 2006). The location of sinus injury is very important in terms of perioperative mortality and morbidity (Kim et al., 2015). Therefore, a high level of suspicion should arise when an injury occurs in proximity to the midline of the cranial vault or the Torcular Herophili. Specially these patients may present shortly after the initial injury, or may not develop symptoms for days to weeks afterwards (Wright et al., 2012).

Nowadays a highly specific brain imaging modalities are available. It includes the computed tomography angiography (CTA) and the magnetic resonance venography (MRV). These imaging devices play a key role in the diagnosis of venous sinus occlusion. Which make it possible to be detected early. Therefore, it is worthy to investigate any patients with the risk of venous sinus injury (Yokota *et al.*, 2006).

Patients with features of intracranial hypertension (ICH) without any focal neurological deficits managed conservatively. Either with anti-edema measures, Acetazolamide or by repeated lumbar punctures (LP) (Brink et al., 1996).

However, some authors have reported persistence of features of ICH with these conservative measures. In addition, if untreated the venous sinus thrombosis (VST), it can extend proximally or distally leading to venous infarction, which is irreversible (Mathew *et al.*, 2017).

By contrast, the use of surgical management is still a matter of controversy. In addition, the role played here by neurosurgeons in the integral treatment remains critical. Because of the fear of high probability of massive blood loss. Either at the time of trauma or at the emergency operation. In both situations, the risk of mortality is high. That is why the classical teaching with the common neurosurgical wisdom is to treat such cases conservatively (Uzan et al., 1998).

Recently, the concept regarding this theory of conservative treatment is changing. It started to be weighed against the benefits of surgery. In which, the elevation of the depressed fragment restores patency of the venous flow. Moreover, lead to resolution of the symptoms caused by raised ICP (Fuentes et al., 2005).

II. Aim of the Work

To review and provide a complete exhaustive summary of the current literatures regarding the proper management of depressed skull fracture over the cranial venous sinuses either conservatively or surgically.

III. Objectives

To compare the efficacy and effectiveness of conservative treatment versus surgical intervention in the management of depressed skull fracture involving the cranial venous sinuses as regards improvement of symptoms and gaining the benefits of better recovery as a primary outcomes. While complications dependent on the intervention being considered with the plan carrying the high risk of morbidity and mortality as the secondary outcomes.