Pharmacological study on the potential effect of antidepressant(s) on ovariectomized-induced osteoporotic rats

A thesis submitted for partial fulfillment of the requirements of the master degree in pharmaceutical sciences (Pharmacology and Toxicology)

By Nora Zakaria Mahmoud Ahmed

B. Pharm. Sc. Cairo University (2011)

Captain Pharmacist in Armed Forces, Kobri El-Kobbah Military Hospital

<u>Under the Supervision of:</u>

Dr. Samar Saad-Eldeen Azab

Associate Professor of Pharmacology and Toxicology Faculty of Pharmacy, Ain Shams University

Dr. Hebatalla Ibrahim Ahmed

Associate Professor of Pharmacology and Toxicology Faculty of Pharmacy (Girls), Al-Azhar University

Dr. Ahmed Esmat Abdelrazek

Associate Professor of Pharmacology and Toxicology Faculty of Pharmacy, Ain Shams University

Faculty of Pharmacy- Ain Shams University

2019

دوائيه لتأثير مضادات الاكتئاب علي هشاشة العظام المحدثة تجريبيا في الجرذان بواسطه استئصال المبايض

متطلبات درجة الماجستير في العلوم الصيدلية (علم الادوية والسموم)

نورا زكريا محمود احمد بكالوريوس العلوم الصيدلية جامعة القاهرة () نقيب صيدلي في القوات المسلحة بمستشفى

د. سمر سعد الدين عزب الأدوية والسموم كلية الصيدلة ، جامعة عين شمس

د. هبة الله ابراهيم احمد
 الأدوية والسموم
 كلية الصيدلة (بنات) ، جامعة الأزهر

الأدوية والسموم كلية الصيدلة ، جامعة عين شمس

كلية الصيدلة - جامعة عين شمس 2019

بسم الله الرحمن الرحيم

﴿ يَرْهَٰعِ اللَّهُ الَّذِينَ آمَنُوا مِنْكُمْ وَالَّذِينَ أُوتُوا الْعِلْمَ حَرَبَاتِ وَاللَّهُ بِمَا تَعْمَلُونَ خَبِيرٌ ﴾

حدق الله العظيم

سورة المجادلة آية ١١

Examination Board Approval Sheet

Name of candidate:

Nora Zakaria Mahmoud Ahmed

Submitted to the Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University.

Approved by the committee in charge:

1. Dr. Azza Sayed Awad

Professor& Head of Pharmacology and Toxicology, Faculty of Pharmacy, Al Ahram Canadian University.

2. Dr. Hala Ahmed Fahmy

Professor& Head of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University.

3. Dr. Samar Saad-Eldeen Azab

Associate Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University.

Head of Pharmacology and Toxicology Department

Prof. Ebtehal El Demerdash Zaki

Date: 2 / 3 / 2019

Acknowledgement

Firstly, I would like to express my sincere gratitude to Dr. Samar Saad Azab, Associate Professor in Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, for her continuous support and encouragement. I would like to thank her for her patience, motivation, and immense knowledge. Her guidance helped me in all the time of my research steps. She steered me in the right direction whenever she thought I needed it.

I would like to express my sincerest appreciation and gratitude to Dr. Hebatalla Ibrahim Ahmed, Associate Professor in Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University. I would like to thank her for her advice, guidance, generous help, kindness and continuous support. Her supervision and support truly helped me through the progression and smoothness of this work.

I would like to express my deepest appreciation to Dr. Ahmed Esmat Abdelrazek, Associate Professor in Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University. The door to Dr. Ahmed office was always open whenever I had a question about my research or writing. Without his assistance and dedicated involvement in every step throughout the process, this thesis would have never been accomplished.

I

_____Acknowledgement

Finally, I must express my very profound gratitude to my beloved daughter Mona and my dearest Hani as they were the reason for my success in every step in my life. I would also like to thank my Sister Amany, my Father and my Brother for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them.

Nora Zakaria Mahmoud

Abstract

The interrelationship between osteoporosis and depression has demonstrated in several but contradictory studies. The present study aimed to investigate the potential effect of antidepressants Imipramine& Fluoxetine on ovariectomized-induced osteoporosis in rats, thus re-positioning their therapeutic indications as anti-osteoporotic drugs. Two weeks following bilateral ovariectomy, rats were treated with Estradiol, Imipramine and Fluoxetine for two weeks. At the end of 6 weeks, depression studies were conducted i.e. open field and forced swimming tests. Bone turnover biomarkers (serum calcium (Ca), serum alkaline phosphatase (ALP), serum osteocalcin, femur osteoprotegrin (OPG) and femur receptor activator of nuclear factor B ligand (RANKL) were determined. Histopathological examination and Electron Microscope examination of trabecular femoral bone were performed and the trabecular morphological parameters were determined by computed tomography CT. Regarding bone histopathology, imipramine exerted a partial restoration of bone structure while estradiol and fluoxetine completely restored bone mass compared the corresponding osteoporosis group. Besides, Electron Microscope examination revealed that imipramine demonstrated a partial restoration of bone structure while estradiol and fluoxetine completely restored bone mass compared to the corresponding osteoporosis group. In bone morphometric parameters, treatments significantly improved trabecular density by about 70%, 66% and 63% respectively. Trabecular thickness was significantly elevated by about 41%, 42% and 43% respectively compared to the osteoporosis group. Treatment with Estradiol, Imipramine and Fluoxetine decreased the values of serum ALP by about 70%, 58% and 59% respectively. They also reduced serum Osteocalcin by about 69%, 69% and 68% respectively. Furthermore, they reduced RANKL value by about 59%, 66% and 65% respectively. In contrast, they significantly elevated the values of OPG by about 581%, 586% and 629% respectively and increased OPG/RANKL ratio by about 583%, 1042% and 837% respectively compared to the corresponding osteoporosis groups. These treatments also reduced depressive features caused by ovariectomy in open field test and forced swimming test. Swimming score in forced swimming test and Ambulation frequency in open field test were found to be strongly correlated with ALP, osteocalcin, OPG, RANKL, trabecular density and trabecular thickness. In conclusion, Imipramine and Fluoxetine have shown potential osteoprotective effects on ovariectomized-induced osteoporosis in rats, which mediate repositioning their therapeutic indications as anti-osteoporotic drugs.

$\underline{Contents}$

Subject	Page
Acknowledgement	I
Abstract	III
Content	V
List of abbreviations	VII
List of tables	VIII
List of figures	IX
1. Introduction	1
1.1.Osteoporosis	1
1.2.Osteoporosis treatment	4
1.3. Depression	13
1.4. Depression treatment	16
1.5.Interrelathionship between osteoporosis and depression	31
Aim of the work	34
2. Materials and methods	35
2.1.Materials	35
2.1.1. Experimental animals	35
2.1.2. Drugs	35
2.1.3. Chemicals, reagents and kits	35
2.2.Methods	36
2.2.1. Induction of osteoporosis	36
2.2.2. Experimental protocol	37
2.2.3. Evaluation of osteoporosis depression	39
interrelationship	
2.2.3.1.Open field test	39
2.2.3.2.Forced swimming test	41
2.2.4. Femoral bone histopathology	44
2.2.5. Electron Microscope	46
2.2.6. Computed tomography	46
2.2.7. Estimation of bone metabolic biomarkers	47
2.2.7.1.Serum ALP	47
2.2.7.2.Serum Osteocalcin	49
2.2.7.3.Serum Ca	53
2.2.7.4.OPG and RANKL	58
2.2.8. Statistical analysis	60
3. Results	61
3.1. Evaluation of osteoporosis depression interrelationship	
3.1.1. Effects of Estradiol, Imipramine and Fluoxetine on	61
open field test	

Contents (cont.)

Subject	Page
3.1.1.1. Effects of Estradiol, Imipramine and	61
Fluoxetine on latency time	
3.1.1.2. Effects of Estradiol, Imipramine and	62
Fluoxetine on defecation frequency	
3.1.1.3. Effects of Estradiol, Imipramine and	63
Fluoxetine on ambulation frequency	
3.1.1.4. Effects of Estradiol, Imipramine and	64
Fluoxetine on rearing frequency	
3.1.1.5. Effects of Estradiol, Imipramine and	65
Fluoxetine on grooming time	
3.1.2. Effects of Estradiol, Imipramine and Fluoxetine on	72
forced swimming test	
3.1.2.1. Effects of Estradiol, Imipramine and	72
Fluoxetine on swimming score	
3.1.2.2. Effects of Estradiol, Imipramine and	73
Fluoxetine on climbing score	
3.1.2.3. Effects of Estradiol, Imipramine and	74
Fluoxetine on immobility score	
3.2. Effects on bone histopathology	79
3.3. Effects on Electron Microscope	81
3.4. Effects on bone morphometric parameters	83
3.4.1. Effects of Estradiol, Imipramine and Fluoxetine	83
on trabecular bone density	
3.4.2. Effects of Estradiol, Imipramine and Fluoxetine	86
on trabecular bone thickness	
3.5. Effects on bone metabolic biomarkers	89
3.5.1. Effects of Estradiol, Imipramine and Fluoxetine	89
on serum ALP levels	
3.5.2. Effects of Estradiol, Imipramine and Fluoxetine	92
on serum OC levels	
3.5.3. Effects of Estradiol, Imipramine and Fluoxetine	95
on serum Ca levels	
3.5.4. Effects of Estradiol, Imipramine and Fluoxetine	98
on OPG levels	
3.5.5. Effects of Estradiol, Imipramine and Fluoxetine	101
on OPG/RANKL	
3.5.6. Effects of Estradiol, Imipramine and Fluoxetine	104
on RANKL levels	

Contents (cont.)

Subject	Page
3.6. Correlation studies between osteoporotic and depressive	107
markers	
4. Discussion	111
Summary and conclusion	
References	125

List of Abbreviations

A	Absorbance
AAS	Atomic absorption spectrometry
ALP	Serum alkaline phosphatase
AMP	2-amino-2-methyl-1-propanediol
ANOVA	Analysis of Variance
BMD	Bone mineral density
Ca	Serum calcium
cDNA	Complementary deoxyribonucleic acid
CT	Computed tomography
DNA	Deoxyribonucleic acid
EDTA	Ethylenediaminetetraacetic acid
ELISA	Enzyme-linked immunosorbent assay
FST	Forced swimming test
H & E	Hematoxylin and eosin
HE	Histopathological examination
HRP	Horseradish peroxidase
kV	kilovolt
MAB	Monoclonal antibodies
MAOIs	Monoamine oxidase inhibitors
MDD	Major Depressive Disorder
OC	Osteocalcin
OD	Optical density
OFT	Open field test
OPG	Osteoprotegrin
OPG/RANKL	OPG RANKL ratio
OVX	Ovariectomy
RANKL	Receptor activator of nuclear factor B ligand
RNA	Ribonucleic acid
rpm	Rotation per minute
RT-PCR	Real time polymerase chain reaction
SEM	Standard error of the mean
SNRI	Serotonin noradrenaline reuptake inhibitors
SSRI	Selective serotonin reuptake inhibitors
Tb	Trabecular
TB.TH	Trabecular thickness
TCA	Tricyclic antidepressants
TMB	Tetramethylbenzidine
TRI reagent	TRIzol reagent

List of Tables

NO	Title	Page
1	Effects of Estradiol, Imipramine and Fluoxetine on	66
	the behavioral performance in the open field test	
2	Effects of Estradiol, Imipramine and Fluoxetine on	75
	the behavioural performance in the forced	
	swimming test	
3	Effects of Estradiol, Imipramine and Fluoxetine on	84
	the trabecular bone density	
4	Effects of Estradiol, Imipramine and Fluoxetine on	87
	the trabecular bone thickness	
5	Effects of Estradiol, Imipramine and Fluoxetine on	90
	serum ALP levels	
6	Effects of Estradiol, Imipramine and Fluoxetine on	93
	serum OC levels	
7	Effects of Estradiol, Imipramine and Fluoxetine on	96
	serum Ca levels	
8	Effects of Estradiol, Imipramine and Fluoxetine on	99
	the femoral bone levels of OPG	
9	Effects of Estradiol, Imipramine and Fluoxetine on	102
	OPG/RANKL ratio	
10	Effects of Estradiol, Imipramine and Fluoxetine on	105
	the femoral bone levels of RANKL	

List of Figures

NO	Title	Page
1	Pathogenesis of osteoporotic fractures	2
2	Mechanism of action of Imipramine	21
3	Mechanism of action of Fluoxetine	26
4	Experimental protocol	38
5	Osteocalcin standard curve	53
6	Calcium standard curve	57
7a	Effects of Estradiol, Imipramine and Fluoxetine on latency time in open field test	67
7b	Effects of Estradiol, Imipramine and Fluoxetine on defecation frequency in open field test	68
7c	Effects of Estradiol, Imipramine and Fluoxetine on ambulation frequency in open field test	69
7d	Effects of Estradiol, Imipramine and Fluoxetine on rearing frequency in open field test	70
7e	Effects of Estradiol, Imipramine and Fluoxetine on grooming time in open field test	71
8a	Effects of Estradiol, Imipramine and Fluoxetine on swimming score in forced swimming test	76
8b	Effects of Estradiol, Imipramine and Fluoxetine on climbing score in forced swimming test	77
8c	Effects of Estradiol, Imipramine and Fluoxetine on immobility score in forced swimming test	78

List of Figures (cont.)

NO	Title	Page
9	Bone histopathological changes of A) Control group, B)	80
	Sham group, C) Osteoporosis, D) Estradiol group, E)	
	Imipramine group, F) Fluoxetine group.	
10	EM changes of A) Control group, B) Sham group, C)	82
	Osteoporosis group, D) Estradiol group, E) Imipramine	
	group, F) Fluoxetine group	
11	Effects of Estradiol, Imipramine and Fluoxetine on the	85
	trabecular bone density	
12	Effects of Estradiol, Imipramine and Fluoxetine on the	88
	trabecular bone thickness	
13	Effects of Estradiol, Imipramine and Fluoxetine on	91
	serum ALP levels	
14	Effects of Estradiol, Imipramine and Fluoxetine on	94
	serum OC levels	
15	Effects of Estradiol, Imipramine and Fluoxetine on	97
	serum Ca levels	
16	Effects of Estradiol, Imipramine and Fluoxetine on the	100
	femoral bone levels of OPG	
17	Effects of Estradiol, Imipramine and Fluoxetine on	103
	OPG/RANKL ratio	
18	Effects of Estradiol, Imipramine and Fluoxetine on the	106
	femoral bone levels of RANKL	