# THE RELATIONSHIP BETWEEN RANDOM BLOOD SUGAR LEVEL AND ARRHYTHMIAS AFTER CABG

### **Ehesis**

Submitted for Partial Fulfillment of Master Degree in Intensive Care Medicine

# By

#### **Amr Ahmed Muhammad Abdelsalam**

M.B.B.Ch., Faculty of Medicine Fayoum University

# Supervised by

## Dr. Amr Mohmed Abdelfatah Sayed.

Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine – Ain Shams University

#### Dr. waleed Ahmed Abdelrahman Mansour

Lecturer of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine – Ain Shams University

#### Dr. Mohmed Abdel Mohsen Abdelnaiem

Lecturer of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2019



سورة البقرة الآية: ٣٢



First and Foremost, I would like to give all my thanks to ALLAH the almighty.

I also extent my thanks and great appreciation to

Dr. Amr Mohmed Abdelfatah Sayed Professor of

Anesthesiology, Intensive Care and Pain Management,

Faculty of Medicine – Ain Shams University Dr. waleed

Ahmed Abdelrahman Mansour Lecturer of Anesthesiology,

Intensive Care and Pain Management,

Faculty of Medicine – Ain Shams University. And

Dr. Mohmed Abdel Mohsen Abdelnaiem Lecturer of

Anesthesiology, Intensive Care and Pain Management,

Faculty of Medicine – Ain Shams University.

For giving me the chance of finishing this work under their supervision and giving me much of their effort, work and time.

I also wish to express my thanks to all my patients for their patience and cooperation.

Amr Ahmed Muhammad Abdelsalam

# **Contents**

| Subject                                 | Page                       |
|-----------------------------------------|----------------------------|
| Contents                                |                            |
| List of Tables                          |                            |
| List of Figures                         | IV                         |
| List of abbreviations                   | V                          |
| Abstract                                | VII                        |
| Introduction                            | 1 -                        |
| Aim of the Work                         | 3 -                        |
| Review of Literature                    |                            |
| Coronary Artery Bypass Grafting         | 4 -                        |
| > Arrhythmias after CABG                | 14 -                       |
| > Diabetes Mellitus and its effect on C | Cardiovascular system 34 - |
| Patients and Methods                    | 41 -                       |
| Results                                 | 47 -                       |
| Discussion                              | 63 -                       |
| Conclusion                              | 70 -                       |
| Summary                                 | 71 -                       |
| Recommendations                         | 73 -                       |
| References                              | 74 -                       |
| الملخص العربي                           | 1 -                        |

# **List of Tables**

| Table No. | Title | Page No. |
|-----------|-------|----------|
|           |       |          |

| Table (1):                                         | indications for CABG 6 -                                                                                                                                                                                                                                                                              |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table (2):                                         | ECG features of ATs( atrial taccycadia) 24 -                                                                                                                                                                                                                                                          |
| Table (3):                                         | Comparison between the two groups as regard age, sex, weight ,risk factors [Medical history and Drug history)and vital data 47 -                                                                                                                                                                      |
| Table (4):                                         | Types of Arrhythmias in group A 52 -                                                                                                                                                                                                                                                                  |
| Table (5):                                         | Comparison between the two groups as regard Preoperative ECHO Findings and Post-Operative Ejection Fraction (EF) 53 -                                                                                                                                                                                 |
| Table (6):                                         | Comparison between the two groups as regard Preoperative and Postoperative GFR(Glomerular Filtration Rate) 54 -                                                                                                                                                                                       |
| Table (7)                                          | Comparison between the two groups as regard regard preoperative Fasting Blood Sugar level, Post operative  Mean and Maximum blood sugar level                                                                                                                                                         |
| Table (8):                                         | ROC curve between group A and group S as regard Postop.  mean Blood sugar mg/d                                                                                                                                                                                                                        |
| Table (9):                                         | The risk of arrhythmia above three cut off points assessed with percentage and odds ratio                                                                                                                                                                                                             |
| steps ( By<br>period cha<br>and Blood<br>other com | c): Comparison between the two groups as regard Surgery repass Time and Cross Clamping Time ) and Post operative aracters and Events(Ventilation Time,ICU stay time,Blood d products transfusion , postoperative Volume Balance , plications, post operative drainage volume and presence of pallon ) |

| 🕮 List of Table. |  | List | of | Tal | les |
|------------------|--|------|----|-----|-----|
|------------------|--|------|----|-----|-----|

| Table (11): | Comparison     | between | the two | groups | as | regard | routine |    |
|-------------|----------------|---------|---------|--------|----|--------|---------|----|
| p           | ostoperative 1 | abs     |         |        |    |        |         | 61 |

# **List of Figures**

| Figurers No. | Title | Page No. |
|--------------|-------|----------|
|              |       |          |

| <b>Figure (1):</b> Mechanisms of af in dm39 -                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Figure (2):</b> Age distribution in Group A and S 48 -                                                                                                                    |
| <b>Figure (3):</b> BMI distribution in group A and S 49 -                                                                                                                    |
| Figure (4):Comparison between the two groups as regard Gender group A and S49 -                                                                                              |
| <b>Figure (5):</b> Comparison between the two groups as regard Risk factors (Medical History ) in group A and S 50 -                                                         |
| <b>Figure (6):</b> Comparison between the two groups as regard Drug History in group A and S 50 -                                                                            |
| <b>Figure (7):</b> Comparison between the two groups as regard Heart rate,<br>Systolic blood pressure and Diastolic blood pressure 51 -                                      |
| <b>Figure (8):</b> Comparison between Types of arrhythmia in group A 52 -                                                                                                    |
| <b>Figure (9):</b> Preoperative and Postoperative GFR distribution in group A and S54 -                                                                                      |
| <b>Figure (10):</b> Preoperative Fasting blood sugar Level distribution in group A and S and Post operative mean and Maximum blood sugar level distribution in group A and S |
| <b>Figure (11):</b> shows Cutoff point from ROC curve between group A and group S as regard Postop. mean Blood sugar mg/dl is<=193.7 57 -                                    |
| <b>Figure (12):</b> Bypass Time and Cross Clamping Time distribution in group  A and S60 -                                                                                   |

#### LIST OF ABBREVIATIONS

**π2** : Chi square test

\* : Significant (p<0.05)

\*\* : Highly significant (p<0.001)

**ACC** : American College of Cardiology

**ACEI** : Angiotensin converting Enzyme inhibitor

**ACLS** : advanced cardiovascular life support

ACS : ACS acute coronary syndrome

AF : atrial fibrillation AFL : and atrial flutter

**AGE** : Advanced Glycation End-products

**AHA/ACC**: American Heart Association\ American Colleague of

Cardiology

**ATS** : atrial tachyarrhythmia's

**AVNRT** : AV nodal reentrant tachycardias

**AVRT** : AV reentrant tachycardias

**Bas** : Bradyarrhythmias

BB : Beta Blocker

**BMI** : Body Mass Index

**BS** : blood sugar concentration

Ca+2 : Calcium

**CABG** : coronary artery bypass grafting

**CAD** : coronary artery disease

**CaMKII** : Ca2+/calmodulin-dependent protein kinase II

CBC : complete blood countCCBs : Calcium channel blockers

CGTF : connective tissue growth factorCKMB : Creatine kinase myocardial band

**COPD** : Chronic obstructive pulmonary disease

**CPB** : cardio pulmonary bypass

**CV** : cardiovascular

CVD : Cardio Vascular Disease

DBP : Diastolic Blood Pressure

DCL : disturbed conscious level

DM : Diabetes mellitusECG : electrocardiogram

#### List of Abbreviations

 $\mathbf{EF}$ ejection fraction

**GFR** GFR(Glomerular Filtration Rate.

HB Hemoglobin HR Heart rate : : HTN Hypertension

**ICD** implantable cardioverter-defibrillator

K potassium

LAD left anterior desendong

Left Ventricular End Diastolic Diameter **LVEDD** Left Ventricular End Systolic Diameter LVESD

Na sodium

**NSVT** non sustained ventricular tachycardia **PCI** Percutaneous Coronary Intervention **PCI** percutaneous coronary intervention

**PLT Platelets** 

**POAF** Postoperative atrial fibrillation **POAFL** Postoperative atrial flutter **POAS** Postoperative arrhythmias **POBAs** 

Postoperative bradyarrhythmias

**POVTAs** Postoperative ventricular tachyarrhythmias

PPM permanent pacemaker

**PVCs** Premature ventricular complexes

**RBBB** right bundle branch block

ROC receiver operating characteristic curve

SBP Systolic Blood Pressure

Statistical Package for the Social Sciences **SPSS** 

SVT Supraventricular tachycardia

Vas ventricular arrhythmias Vf Ventricular fibrillation

Vt Ventricular tachyarrhythmias

**WBCs** White blood cell count

Wide complex tachycardia's WCT WPW Wolff-Parkinson-White

## **Abstract**

**Background:** Arrhythmia is a major complication of CABG and it happens in 30 % of patients after CABG. Arrhythmias represent a significant source of morbidity and mortality. Mainly have a benign course, it may prolong the icu stay and rarely may lead to mortality. Postoperative arrhythmias (POAs) include atrial tachyarrhythmia's (ATs) and to a lesser extent ventricular arrhythmias (VAs) and Brady arrhythmias The outcome of arrhythmia depends on several factors like underlying cardiac function, patient's comorbidities, arrhythmia duration, and ventricular response rate. So, POAs could be tolerated in some patients and a source of morbidity and mortality in others.

**Objective:** We aim to analyze the relationship between serum random blood sugar concentration (BS) and arrhythmias after CABG.

**Methodology:** We conducted a case control study on 60 patients patients who underwent isolated elective on pump CABG divided in two groups group A arrhythmia group and group S non arrhythmia group patient clinical and procedure characters was notice and recorded Serum blood sugar.

**Results:** History of DM .insluin Intake , postoperative Mean AND Maximum BS and post operative drainage volume showed statistically significance (p-value < 0.05).

**Conclusion:** The predictors of postoperative Arrhythmias after CABG are hyperglycemia, history of Insluin intake and postoperative drainage volume. In particular, hyperglycemia and postoperative Arrhythmias after CABG were found to have a very strong association. Therefore, we believe that BS control should reduce the incidence of AF after CABG.

Keywords: Blood Sugar, CABG

.

## Introduction

Arrhythmias are common after cardiac surgery such as coronary artery bypass grafting (CABG) surgery and represent a significant source of morbidity and mortality. Although most of these arrhythmias are transient and have a benign course, it may prolong intensive care and hospital stay, and in rare instances, it may lead to mortality. Postoperative arrhythmias (POAs) include atrial tachyarrhythmia's (ATs) and to a lesser extent ventricular arrhythmias (VAs) and Brady arrhythmia [L. Herzog and C. Lynch, 1994). The clinical significance of each arrhythmia depends on several factors that include underlying cardiac function, patient's comorbidities, arrhythmia duration, and ventricular response rate. So, POAs could be tolerated in some patients and a source of morbidity and mortality in others, depending on the interaction between these factors [J.P.Mathew et al, 2004).

<u>Diabetes mellitus (DM)</u> is recognized as a major cardiovascular (CV) risk factor and its close relationship with cardiovascular morbidity and mortality is well established *[Garcia MJ. et al , 1974)*. Although coronary artery disease and related cardiac events are the most documented diabetic cardiovascular complications, cardiac electrical system is also an important target for diabetic damage. In Framingham heart study, DM is

#### Introduction

established as an independent risk factor for atrial fibrillation (AF) after 38 years of follow-up [Benjamin EJ. et al , 1944). A recent meta-analyses published by Huxley [Huxley RR. et al ,2011) revealed that patients with DM had a 40% greater risk of developing AF compared to patients without.

## **Aim of the Work**

We aim to analyze the relationship between serum random blood sugar concentration (BS) and arrhythmias after CABG.

## **Review of Literature**

#### Chapter (1):

## **Coronary Artery Bypass Grafting**

CABG was introduced in the 1960s with the aim of offering symptomatic relief, improved quality of life, and increased life expectancy to patients with coronary artery disease CAD (van Domburg RT etal ,2009) By the 1970s, CABG was found to increase survival rates in patients with multivessel disease and left main disease when compared with medical therapy (Veterans Administration Coronary Artery Bypass Surgery Cooperative Study Group, 1984).

#### **Indications**

Coronary artery bypass grafting (CABG) is performed for both symptomatic and prognostic reasons. Indications for CABG have been classified by the American College of Cardiology (ACC) and the American Heart Association (AHA) according to the level of evidence supporting the usefulness and efficacy of the procedure (Hillis LD, et al. 2011) (Eagle KA, et al. 2004):

 Class I: Conditions for which there is evidence and/or general agreement that a given procedure or treatment is useful and effective

- Class II: Conditions for which there is conflicting evidence and/or a divergence of opinion about the usefulness or efficacy of a procedure or treatment
- Class IIa: Weight of evidence or opinion is in favor of usefulness or efficacy
- Class IIb: Usefulness or efficacy is less well established by evidence or opinion
- Class III: Conditions for which there is evidence and/or general
  agreement that the procedure/treatment is not useful or
  effective, and in some cases it may be harmful indications for
  CABG as detailed by the ACC and the AHA are listed in Table1