Comparison between effect of Lactoferrin and Iron formula on blood indices

Thesis

Submitted for partial fulfillment of Master degree in Pediatrics

By

Eslam Saeed Abdelwahab MBBch. Cairo University 2012

Under supervision of

Prof. Hoda Lotfy Elsayed

Professor of Pediatrics
Faculty of Medicine - Ain Shams University

Dr. Yasmin Gamal Abdo Elgendy

Lecturer of Pediatrics
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2019

Acknowledgments

First and foremost, I feel always indebted to Allah, the **Most Beneficent** and **Merciful** who gave me the strength to accomplish this work,

My deepest gratitude to my supervisor, **Prof. Hoda Lotfy Elsayed,** Professor of Pediatrics, Faculty of Medicine Ain Shams University, for her valuable guidance and expert supervision, in addition to his great deal of support and encouragement. I really have the honor to complete this work under her supervision.

I would like to express my great and deep appreciation and thanks to **Dr. Yasmin Gamal Abdo Elgendy**, Lecturer of Pediatrics, Faculty of Medicine - Ain Shams University for her meticulous supervision, and her patience in reviewing and correcting this work.

Special thanks to all members of my Family, especially my **Parents** and my **Wife**, for their continuous encouragement, enduring me and standing by me.

Last but not least, I would also like to thank my colleagues, my patients and everyone helped me in this study.

≥ Eslam Saeed Abdelwahab

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	vii
Introduction	1
Aim of the Work	4
Review of Literature	
Iron deficiency anemia	5
Lactoferrin	33
Subjects and Methods	49
Results	54
Discussion	72
Conclusion	80
Recommendations	81
Summary	82
References	85
Arabic Summary	

List of Abbreviations

Abbr. Full-term

ACD.....: Anemia of chronic disease.

APO_TF : Apotransferrin.

AZT: : Azidothymidine.

BDNF : Brain derived neurotrophic factor.

BLf: : bovine lactoferrin.

BMP: Bone morphogenetic protein.

C/EBPa : control enhancer_binding protein a.

CBC: : Complete blood count.

CD-14 : Cluster of differentiation 14.

CP: : Ceruloplamin.

CRP: : C-reactive protein.

DEX: Dexamethasone.

DMT-1 : Divalent metal transporter 1.

EDTA : Ethylene diamine tetra acetic acid.

EPO: : Erythropoietin.

Fe_s: : Iron sulfer.

FPN 1 : Ferroportin 1.

GDF 15 : Growth differentiation factor 15.

HCP 1 : heme carrier protein 1.

HCV : Hepatic c virus.

HGB : Hemoglobin.

HIFs: Hypoxia-inducible factors.

HIV: : Hepatic I virus.

hLf: human lactoferrin.

IBC: : Iron binding capacity.

IBD: : Inflammatory bowl disease.

ID: : Iron deficiency.

IDA: iron deficiency anemia.

IDDM : Insulin dependant diabetes mellitus.

IRIDA: Iron refractory iron deficiency anemia.

IRPs: : Iron regulatory proteins.

IUGR : IntraUterine Growth Restriction.

KDa : kilodaltons.

Lf: lactoferrin.

LFrs: : lactoferrin receptors.

LPS: Lipopolysaccharide.

MAP : Mitogen-activated protein kinase.

Mb : Myoglobin.

MCH: : Mean corpuscular hemoglobin.

MCV : Mean corpuscular volume.

Mt2 : Matriptase 2.

PCV: Packed cell volume.

PDB ID: Identifier protein data bank.

PLT: Platle.

PMNS: Polymorphonucler cells.

RDW : Red distribution width.

ROS : Reactive oxygen species.

S. IL 6 : Serum interleukin 6.

SD: Standard deviation.

STAT 3 : Signal transducer and activator of transcription 3.

TBI.....: Total body iron.

Tf: transferrin.

TFrs: transferrin receptors.

TGF _ **B** : Transforming growth factor B.

TIBC: Total iron-binding capacity.

TLR_4: Toll_like receptor 4.

TSAT : Transferrin saturation.

TWSG 1: Twisted gastrulation homologue 1.

WBCs: White blood cells.

WHO: World health organizations.

ZnPP: : Erythrocyte zinc protoporphyrin.

List of Tables

Table No.	Title 1	Page No.
Table (1):	At a glance: causes of IDA	19
Table (2):	Thresholds of hemoglobin used to anemia in different sub populations, level	at sea
Table (3):	Commonly used tests for diagnot IDA	
Table (4):	Mean values of hematological para in pregnant women suffering of I IDA before and after bovine lactofe ferrous sulfate therapy	D and errin or
Table (5):	Comparison between the two according to age and sex	-
Table (6):	Comparison between the two according to Mean anthropo measurements and 24 hour recall are intake in dietetic history	metric nd iron
Table (7):	Comparison between Clinical data two groups in the study before reddrugs	eiving
Table (8):	Comparison between 2 groups reg hematological indices after red supplements	ceiving
Table (9):	Comparison between clinical data in 1 pre and post iron supplementation.	

Table (10):	Comparison between clinical data in group 2 pre and post lactoferrin supplementation.	. 65
Table (11):	Correlation of serum ferritin levels and clinical data at post drug supplementation state in both groups.	. 70

List of Figures

Figure No	Title	Page No.
Figure (1):	The main steps of iron metabolism.	6
Figure (2):	Hormonal regulation of iron efflu duodenal enterocytes and reticuloend macrophages by hepcidin	lothelial
Figure (3):	Cellular iron uptake via the Tf cycle	e13
Figure (4):	Iron requirements of individuals in of absorbed iron by age group and s	
Figure (5):	Structure of lactoferrin	34
Figure (6):	Predicted structure of Lf fro EU812318 (bLF) sequence using P	
Figure (7):	Comparison between Mean age of groups	
Figure (8):	Comparison between the two according to sex.	
Figure (9):	Comparison between Mean S.Ferrit of the two groups after receiving drug	
Figure (10):	Comparison between Mean S. level pre and post iron supplementa	
Figure (11):	Comparison between Mean RBC pre and post iron supplementation.	
Figure (12):	Comparison between Mean Haemelevel pre and post iron supplementa	C
Figure (13):	Comparison between Mean PCV leand post iron supplementation	-

Figure (14):	Comparison between Mean MCV level pre and post iron supplementation
Figure (15):	Comparison between Mean MCH level pre and post iron supplementation
Figure (16):	Comparison between Mean RDW level pre and post iron supplementation
Figure (17):	Comparison between Mean S.Ferritin level pre and post lactoferrin supplementation 66
Figure (18):	Comparison between Mean RBCs level pre and post lactoferrin supplementation 66
Figure (19):	Comparison between Mean HGB level pre and post lactoferrin supplementation 67
Figure (20):	Comparison between Mean MCV level pre and post lactoferrin supplementation 67
Figure (21):	Comparison between Mean MCH level pre and post lactoferrin supplementation 68
Figure (22):	Comparison between Mean RDW level pre and post lactoferrin supplementation 68
Figure (23):	Correlation of serum ferritin levels and MCV at pre drug supplementation state in LF group
Figure (24):	Correlation of serum ferritin levels and RBCs at pre drug supplementation state in LF group
Figure (25):	Correlation of serum ferritin levels and MCV at post drug supplementation state in iron group
Figure (26):	Correlation of serum ferritin levels and PCV at post drug supplementation state in LF group

Abstract

Background: Iron deficiency (ID) is the most common micronutrient deficiency worldwide and young children are a special risk group because their rapid growth leads to high iron requirements. Risk factors associated with a higher prevalence of ID anemia (IDA) include low birth weight, high cow's-milk intake, low intake of iron-rich complementary foods, low socioeconomic status, and immigrant status. Aim of the Work: to compare between Iron maintenance therapy and lactoferrin on blood indices in infants and children. Subjects and Methods: A prospective interventional study was conducted on 40 children with an age range from 6 month to 3 year old were recruited from Nutrition unit, Children hospital - Ain Shams University. After the approval of the research ethics committee of Ain Shams University, informed consents were obtained from parents or caregivers before the enrollment of the children in the study. Results: Conclusion: Oral lactoferrin is effective in elevating hemoglobin and iron levels in children and can also be used to improve iron status in patients with iron deficiency.

Key words: lactoferrin, iron formula, blood indices

Introduction

ron is a mineral that is naturally present in many foods, added to some food products, and available as a dietary supplement. Iron is an essential component of hemoglobin, an erythrocyte protein that transfers oxygen from the lungs to the tissues (Wessling-Resnick et al., 2014).

Iron deficiency is the most common nutritional deficiency in children. The World Health Organization (WHO) estimates that anemia affects one-quarter of the world's population and is concentrated within preschool-aged children and women; a majority of the anemia is due to iron deficiency (*DeBenoist et al.*, 2005) (*Stoltzfus et al.*, 2003).

Iron deficiency anemia develops when body stores of iron drop too low to support normal red blood cell (RBC) production. Inadequate dietary iron, impaired iron absorption, bleeding, or loss of body iron in the urine may be the cause (*Hempel and Bollard*, 2016).

The functional deficits associated with anemia include gastrointestinal disturbances and impaired cognitive function, immune function, exercise or work performance, and body temperature regulation (*Clark*, 2008).

In infants and children, Iron deficiency anemia can result in psychomotor and cognitive abnormalities that, without treatment, can lead to learning difficulties (*Aggett*, 2012).

Lactoferrin is an iron-binding glycoprotein found in the milk of mammals such as humans, A large amount of LF is found especially in the colostrums, and its content differs among animal species. In humans, the LF content in foremilk is 5 to 7 g/l, almost 10 times higher than that in cow's milk (0.8 g/l). In addition, Lactoferrin is also found in tears, saliva, and neutrophils, and is considered to be one of defensive factors that prevent bacterial and viral infection (*Paesano et al.*, 2006).

It has also been found that the iron-binding capacity of Lactoferrin is about 300-fold greater than that of transferrin. It has been confirmed that Lactoferrin regulates iron absorption. Recently, it was reported that oral lactoferrin increases hemoglobin and total serum iron in pregnant women (*Hagiwara et al.*, 1997).

Oral Lactoferrin significantly improved the number of red blood cells, hemoglobin, total serum iron, and serum ferritin concentrations (*Paesano et al.*, 2006).

As matter of fact, in anaemic subjects also including non pregnant women, Lactoferrin oral administration firstly increases the concentration of total serum iron indicating an efficient restoring of ferroportin function (*Paesano et al.*, 2008).

Furthermore, the increase of serum hepcidin (or prohepcidin), related to an increase of hematological parameters, should be consider as signal of a regulatory mechanism to avoid an excess of iron export from cells to blood, subsequent to the restoring of ferroportin expression by Lactoferrin. Therefore, the efficacy of Lactoferrin in curing Iron deficiency anemia can be explained through its influence on systemic iron homeostasis (*Paesano et al.*, 2009, 2010).