Effect of digital scanning technologies and techniques on marginal and internal fit of monolithic zirconia crowns constructed on two angles of convergence.

A thesis submitted for the partial fulfillment of the Doctor Degree in Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University

Ву

Farid Emad El-Din Farid Ibrahim

BDs , MD.Sc. Faculty of dentistry, Ain Shams University

Supervisors

Prof. Dr. Amina Mohamed Hamdy

Professor of Fixed Prosthodontics Department, Faculty of Dentistry, Ain Shams University

Dr. Maged Mohamad Zohdy

Assistant Professor of Fixed Prosthodontics Faculty of Dentistry, Ain Shams University

Dr. Ahmed Ezzat Sabet

Assistant Professor of Fixed Prosthodontics Faculty of Dentistry, Ain Shams University

Dedication

This work is dedicated to

My Dear parents

Beloved wife, daughters Hania

& Nelly

And to my beloved brother and

sisters

List of Contents

Title	Page No.
List of figures	
List of tables	V
• Introduction	1
Review of Literature	2
Aim of the Study	42
Materials and Methods	43
• Results	73
• Discussion	88
Summary and Conclusions	96
References	100
Arabic Summary	

List of figures

Figure 1: Stainless steel die with 12□ convergence	. 47
Figure 2: Stainless steel die with 20□ convergence	. 47
Figure 3: Acrylic base accommodating the dies	. 48
Figure 4: Epoxy die with 12 ⁰ convergence	. 49
Figure 5: Epoxy die with 20 ⁰ convergence	.50
Figure 6: Impregum impression.	51
Figure 7 : Impregum impression	52
Figure 8: Vaccum mixer	.53
Figure 9: Gypsum model	. 53
Figure 10: Omnicam intraoral scanner	. 54
Figure 11: scanned die from group A2	. 55
Figure 12: Administration window for collab 2017	. 56
Figure 13: Selection of impression scanning mode	. 56
Figure 14: Scanning impression	. 57
Figure 15: Scanning model	. 57
Figure 16: scanned 3D model	. 58
Figure 17: Editing the preparation margin for group B1	. 59
Figure 18: Editing the preparation margin for group C1	. 59
Figure 19: Determining the insertion axis	. 60
Figure 20: The proposed crown design	. 61

Figure 21: The occlusal view of the final crown design
Figure 22: Nesting of crowns using DentalCam software
Figure 23: vhf 5-axis milling machine
Figure 24: Drying lamp63
Figure 25: Nabertherm Sintering furnace
Figure 26: Arrangement of crowns in Sintering bowl
Figure 27: Sintering cycle chart
Figure 28: Hydraulic press seating device
Figure 29: Diagram showing measuring points for each replica
Figure 30: Replica cut in buccolingual direction
Figure 31: Light microscope used to measure internal fit
Figure 32: Replica of axial fit
Figure 33: Replica of occlusal fit
Figure 34: 5 equidistant marks on the margin
Figure 35: Cementation using a specially designed loading device
Figure 36: Bar chart showing mean internal misfit values in μm for all
subgroups
Figure 37: : Bar chart showing mean internal misfit values in μm for
different degrees of convergences
Figure 38: Bar chart showing mean internal misfit values in µm for different
scanning techniques

Figure 39: Bar chart showing mean internal misfit values in μm for different
surfaces
Figure 40: Bar chart showing mean marginal gap values in Microns for all
subgroups
Figure 41: Bar chart showing mean marginal gap values in Microns for
different degrees of convergences
Figure 42: Bar chart showing mean marginal gap values in Microns for
different scanning techniques
Figure 43: Bar chart showing mean marginal gap values after cementation in
microns for all subgroups86
Figure 44: Bar chart showing mean marginal gap values before and after
cementation in microns

List of tables:

Table 1: Materials used in the study43-44
Table 2: Scanners used in the study45
Table 3: Experimental Factorial Design
Table 4: Two-way ANOVA table showing significance of different variables and their interactions
Table 5: Means ±SD of internal fit in μm for all subgroups75
Table 6: Mean ±SD for the internal fit (μm) for different degrees of convergence
Table 7: Mean ±SD for the internal fit (μm) for different impression techniques
Table 8: Mean ±SD of internal misfit related to axial and occlusal surfaces
Table 9: Two-way ANOVA table showing significance of different variables and their interaction
Table 10: Means ±SD of marginal gap in Microns for all subgroups
Table 11: Mean ±SD for marginal gap values Microns for different degrees
of convergences83
Table 12: Mean ±SD for the marginal gap in Microns for different scanning techniques

Table 13: Means ±SD	of marginal gap	values in	µm for al	l subgroups	after
cementation					85

Introduction

Full coverage crowns are one of the most common fixed prosthodontic treatments, and for many years elastomeric impression materials have been used in their fabrication with success. Recent technological advancements have introduced alternatives to conventional impression methods through the use of Computer Aided Design-Computer Assisted Manufacturing (CAD-CAM) and intra-oral digital scanners. These new technologies may offer similar or better results compared to conventional methods. Some benefits of CAD-CAM production may include a more standardized method of prosthesis fabrication and the use of highly homogenous materials. Additionally, the workflow associated with prosthesis fabrication by digital impression methods may offer benefits such as decreased length and number of appointments, and decreased material cost.

For intra-oral and extraoral scanning devices to be considered an acceptable alternative to conventional impressions methods, it is important that they yield crowns with similar or better clinical success. Of factors that can predict clinical success are internal fit and retention, which should be as maximum as possible.

The everyday improvement in the digital dentistry and the outstanding technologies present make it obligatory that one should follow and understand the benefits and limitations of such technologies.