Correlation of Outcome of Neo adjuvant Concurrent Chemo radiotherapy with Clinico-epidemiological characteristics in locally advanced rectal cancer patients: retrospective study

AThesis

Submitted in Partial Fulfillment of Master Degree in Clinical Oncology and Nuclear Medicine

By

Wafaa Abd Elmonem Elnemrawy

M.B., B.ch., Faculty of Medicine, Tanta University

Under the Supervision of

Prof. Dr. Hany Mohammed Abd Elaziz

Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine - Ain Shams University

Prof. Dr. Ramy Refaat Youssef Ghali

Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine - Ain Shams University

Dr. Nesreen Ahmed Mosalam

Assistant Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2019

سورة المؤمنون _ آية ٢٩

Acknowledgments

First and foremost, I feel always indebted to Allah, the Most Beneficent and Merciful who gave me the strength to accomplish this work.

My deepest gratitude to my supervisor, **Prof. Dr. Hany Mohammed Abd Elaziz**, Professor of Clinical Oncology and Nuclear
Medicine, Faculty of Medicine - Ain Shams University, for his valuable
guidance and expert supervision, in addition to his great deal of support
and encouragement. I really have the honor to complete this work under his
supervision.

I would like to express my great and deep appreciation and thanks to **Prof. Dr. Ramy Refaat Youssef Ghali,** Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine - Ain Shams University, for his meticulous supervision, and his patience in reviewing and correcting this work.

I must express my deepest thanks to my **Dr. Nesreen Ahmed Mosalam,** Assistant Professor of Clinical Oncology and Nuclear Medicine,
Faculty of Medicine - Ain Shams University, for guiding me throughout this work and for granting me much of her time. I greatly appreciate her efforts.

Thanks a lot to all my professors and colleagues for their considerable care and support.

Special thanks to my **Parents** and all my **Family** members for their continuous encouragement, enduring me and standing by me.

Last but not least, I would also like to thank my colleagues, my patients and everyone helped me in this study.

> Wafaa Abd Elmonem Elnemrawy

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Work	5
Review of Literature	
Epidemiology	6
Risk factors of Rectal Cancer	11
Treatment	37
Patients and Methods	57
Results	61
Discussion	94
Summary	109
Conclusion	112
References	113
Arabic Summary	—

List of Abbreviations

Abbr. Full-term

ACBEAir contrast barium enema
AJCCAmerican joint committee on cancer
APCAdenomatous polyposis coli
APRAbdominoperineal resection
ASCOThe American society of clinical oncolog
ASRAge-standardized rate
BPRBleeding per rectum
CA 19-9 Cancer antigen 19-9
CAPOXCapecitabine & Oxaloplatin
cCRComplete clinical response
CDCCenters for disease control
CEACarcinoembryonic antigen
CIConfidence interval
CRCColorectal cancer
CRMCircumferential margin
CTComputed tomography
DCBEDouble contrast barium enema
DFS Disease free survival
dMMRMismatch repair protein
ECOGEastern Cooperative Oncology Group
ERUSEndo rectal ultra sound
ESMOEuropean society for medical oncology
FAPFamilial adenomatous polyposis
FOBTFecal occult blood test
FOVField of view
H&E Hematoxylin and eosin
HNPCCHereditary nonpolyposis colorectal cance

IBD.....Inflammatory bowel disease IHC.....Immune histochemical **IMRT.....** Intensity modulated radiotherapy LARLow anterior resection LARC.....Locally advanced rectal cancer **LE.....** Local excision LR.....Local recurrence LVI.....Lympho vascular invasion MRF......Meso rectal fascia MRI......Magnetic resonance imaging **MSI.....** Microsatellite instability **NA.....** Not applicable or not reached **NACRT** Neo adjuant concurrent chemo radiotherapy NCCN......National comprehensive cancer network **NCRP.....** National cancer registry program NCRP......National Population-Based Cancer Registry Program **NOS.....** Not otherwise **NSAIDs.....** Nonsteroidal ant inflammatory drugs. OS.....Overall survival pCRPathological complete response **PET**Positron emission tomography PNI.....Peri neural invasion RSNARadiological society of North America **SEER.....** Surveillance, epidemiology and end results TME..... Total mesorectal excision TME..... Total mesorectal excision UICC International union against cancer US......United states VC......Virtual colonoscopy **VMAT.....** Volumetric modulated arc therapy

List of Tables

Table No.	Title	Page No.
Table (1):	Incidence rate/100,000 popular rectal cancer in Lower, Middle Egypt: males according to NCRP.	e, Upper
Table (2):	Incidence rate/100,000 popular rectal cancer in Lower, Middle Egypt: females according to NCR	e, Upper
Table (3):	Primary tumor (T) staging of rectal cancer.	
Table (4):	Regional lymph nodes (N) starectal cancer	
Table (5):	Distant metastasis (M) staging cancer.	
Table (6):	Anatomic stage/prognostic groups	34
Table (7):	Modified Ryan scheme for tumor rescore.	_
Table (8):	Randomize studies of pre- concurrent chemo radiotherapy for	-
Table (9):	Randomize studies of preoperation course radiotherapy (5Gy×5f) for cancer.	or rectal
Table (10):	(ESMO) guidelines recommended treatment for rectal cancer sh stratified based on the recurrence	ould be

Table (11):	Randomize studies of preoperative concurrent chemo radiotherapy with Oxaliplatin for rectal cancer	54
Table (12):	Patients demographic characteristics distribution of the study group	51
Table (13):	Disease factors distribution of the study group6	53
Table (14):	Treatments factors distribution of the study group	55
Table (15):	Response after neoadjuvant CCRT distribution of the study group	56
Table (16):	Loco-regional recurrence distribution of the study group.	58
Table (17): 7	Fime of distant Mets. Distribution of the study group6	59
Table (18):	Overall survival distribution of the study group	59
Table (19):	Median of loco-regional recurrence free survival of the study group	'O
Table (20):	Median of distant metastasis free survival of the study group	7 1
Table (21):	Median of disease free survival of the study group	7 1
Table (22):	Median of overall survival of the study group	12
Table (23):	Relation between patient's demographic characteristics and DFS	13
Table (24):	Relation between disease factors and DFS7	' 4

Table (25):	Relation between treatment factors and DFS
Table (26):	Relation between DFS and responses after neoadjuvant CCRT
Table (27):	Relation between patient's demographic characteristics and overall survival80
Table (28):	Relation between disease factors and overall survival
Table (29):	Relation between treatment factors and overall survival
Table (30):	Relation between overall survival and responses after neoadjuvant CCRT85
Table (31):	Multivariate analysis of independent predictors through overall survival in all patients.

List of Figures

Figure No	e. Title	Page No.
Figure (1):	Globocan 2012 Egypt fact estimated cancer incidence in both	
Figure (2):	Globocan 2012 Egypt fact estimated cancer incidence in both	
Figure (3):	Algorithm for colorectal cancer scr	eening 18
Figure (4):	Kaplan-Meier loco-regional recurrence the study group	
Figure (5):	Kaplan-Meier DFS of the study gro	oup71
Figure (6):	Kaplan-Meier of OS of the study g	roup 72
Figure (7):	Kaplan-Meier DFS between grade study group.	
Figure (8):	Kaplan-Meier DFS between ty surgery in the study group	
Figure (9):	Kaplan-Meier DFS between T stathe study group	
Figure (10):	Kaplan-Meier DFS between N stathe study group	
Figure (11):	Kaplan-Meier Overall survival l grades in the study group	
Figure (12):	Kaplan-Meier Overall survival surgeries in the study group	
Figure (13):	Kaplan-Meier Overall survival bet Pathological Staging T in the study	•

Figure (14):	Kaplan-Meier Overall survival between y Pathological Staging N in the study group	87
Figure (15):	Kaplan-Meier Overall survival between y Pathological Staging LVI in the study group	88
Figure (16):	Kaplan-Meier Overall survival between y Pathological Staging pathological responses in the study group.	88
Figure (17):	Hazard ratio multivariate analysis of independent predictors through overall survival in all patients.	90

Abstract

Background: The treatment of (LARC) is subject to continuous change due to better diagnostic tools, radio therapeutic techniques and chemotherapeutic agents. It is clear, that a multimodality approach is the only way to achieve satisfactory local recurrence and survival rates in this type of cancer. Widespread use of neoadjuvant therapy have all contributed to decrease the rate of local recurrence, raise the quality of life and the probability of overall survival.

Aim of the Work: to correlate clinico-epdemiological factors of locally advanced rectal cancer patients with outcomes of neoadjuvant concurrent chemo radiotherapy (NACRT) regarding disease -free survival (DFS) and overall survival (OS).

Patients and Methods: In this retrospective study, data were collected from files of 100 patients with locally advanced rectal cancer patients with cT3-4 or any cT/cN+ disease assessed using colonoscopy, enhanced computed tomography, and or magnetic resonance imaging, between Jan 2010 and December 2016 in oncology department of Ain Shams faculty of medicine and Nasser institute of treatment and research. The patients received long course radiotherapy (45-50.4 Gy/1.8-2 Gy) combined with concurrent chemotherapy. Surgery was done after NACCRT, Which had been abdominoperineal resection (APR), low anterior resection (LAR), exploration. Data were collected retrospectively by reviewing of medical records (hard copy records, pre treatment radiology, radiotherapy documentation, surgical and pathology reports, and follow up clinic records). Ethics committee of Ain Shams faculty of medicine approved the study

Results: This study showed younger age presentation of our population with median age 44yr. The study showed that grades of rectal cancer having statistically difference with DFS and OS with P value 0.009 and hazard ratio 1.919 with 95% CI. Types of surgery (LAR, APR and exploration) had statistically significant difference and impact on DFS and OS with P value 0.044 and hazard ratio 1.646 with 95% CI. ypathological nodal staging had statistically significant difference on DFS and OS with P value 0.042 and hazard ratio 1.633 with 95% CI. Pathological response that achieved after CCRT having statistically significant difference on DFS and OS with P value 0.048 and hazard ratio 1.323 with 95% CI. These parameters are independent prognostic factors and considered during management of patients with locally advanced rectal cancer.

Conclusion: assessment of LARC patients before selection type of therapy is very important to select whom patient will benefit from NACRT, will gain functional preservation at the time of surgery and increase probability of overall survival. **Key words:** Neoadjuvant Concurrent Chemo radiotherapy, Clinico-epidemiological characteristics rectal cancer.

Introduction

Colorectal cancer is the fourth most frequently diagnosed cancer and the second leading cause of cancer death in the United States. In 2018, 43,030 new cases of rectal cancer are estimated in the United States (23, 110 cases in men; 16, 110 cases in women). During the same year, it is estimated that 50,630 people will die from rectal and colon cancer combined (Siegel et al., 2018).

It accounts for over 9% of all cancer incidence and accounts for about 8.5% of all cancer related mortality. Countries with the highest incidence rates include Australia, New Zealand, Canada and the United States. The countries with the lowest risk include China, India, and parts of Africa (*Tabaries et al.*, 2015).

According to the results of the National Population-Based Registry Program of Egypt 2008-2011, these data showed that ASR of 6 and 4.9 per 100, 000 in men and women respectively. The incidence represents 3.2% of all cancers in both sexes. 1070rectal cancer cases suspected within 2020 (568 males and 505 females with male to female ratio (1.1:1) (*Amal et al.*, 2014).

Modifiable risk factors associated with 30-50% of the colorectal cancer risk is attributable to lifestyle factors such

as smoking, high consumption of red and processed meat, obesity, diabetes, and excessive consumption of alcohol (*Kolligs et al.*, 2016).

Screening for rectal cancer is effective in reducing the mortality risk among the screened population. In A cohort CRC screening feasibility study using fecal occult blood testing, showed a reduction in rectal cancer mortality in screened group compared to being unscreened (*Jan et al.*, 2014).

Other screening tests, such as colonoscopy and sigmoidoscopy, have been proposed. According to a recent randomized trial in the United Kingdom, a one -time flexible sigmoidoscopy screening between 55 and 64 years of age reduced colorectal cancer incidence by 33% and mortality by 43% (*Atkin et al.*, 2010).

The main manifestation of rectal cancer are melena, abdominal pain, unexplained iron deficiency anemia and/or a change in bowel habits with positive family history of colorectal cancer and polyps. Full colonoscopy and Pelvic MRI are required for all rectal cancer patients at time of diagnosis. For detection of distant metastasis, CT of the chest is required (*Kolligs et al.*, 2016).

The treatment of locally advanced rectal cancer is subject to continuous change due to better diagnostic tools,

radio therapeutic techniques and chemotherapeutic agents. It is clear, that a multimodality approach is the only way to achieve satisfactory local recurrence and survival rates in this type of cancer (*Nordlinger et al.*, 2012).

Locally advanced rectal cancer (LARC) has often developed postoperative local recurrence. Widespread use of neoadjuvant therapy have all contributed to decrease the rate of local recurrence, raise the quality of life and the probability of overall survival (*Joshua and Julio*, 2015).

In an effort to reduce further the incidence of margin positivity, local recurrence and improve survival of rectal cancer, preoperative neoadjuvant radiotherapy with or without chemotherapy has been introduced as adjuvant to total mesorectal excision (TME). A number of trials have reported reduced local recurrence rates and a potential survival advantage associated with preoperative radiotherapy (*Belluco et al.*, 2011).

It also needs to judge and consider the balance between the higher recurrence rate and the higher sphincter-preserving rate. In addition, the evaluation of the efficacy of neoadjuvant radio chemotherapy should be as enough as possible. It needs to maximally improve the accuracy of evaluation (*Benson et al.*, 2015).