

SHAPING ABILITY OF THREE DIFFERENT NICKEL-TITANIUM ROTARY INSTRUMENTS (IN VITRO STUDY)

Thesis Submitted to Faculty of Dentistry,
Ain Shams University
In partial Fulfillment of the Requirement for
Master's Degree in Endodontics

By

YASER OSAMA ALGOHARY

B.D.S Faculty of Dentistry, Ain Shams University (2012)

Faculty of Dentistry Ain Shams University 2018

Supervisors

Dr. ABEER ABDELHAKIM EL GENDY

Professor of Endodontics Faculty of Dentistry Ain Shams University

And

Dr. MOHAMED MOKHTAR NAGY

Associate Professor of Endodontics Faculty of Dentistry Ain Shams University

بسم الله الرحمن الرحيم (رَبِّ أَوْزِعْنِي أَنْ أَشْكُرَ نِعْمَتَكَ الَّتِي أَنْعَمْتَ عَلْيَ أَنْعَمْتَ عَلَى وَالدَي وَأَنْ أَعْمَلَ صَالِماً تَرْضَاهُ وَأَدْ خِلْنِي بِرَحْمَتِكَ فِي عِبَادِكَ الصَّالِحِينَ)

آية: ١٩ سورة النمل

Acknowledgment

First of all thanks to almighty Allah the most kind and most merciful. I express my deepest gratitude to Dr **Abeer EL Gendy** professor of Endodontics, Faculty of Dentistry, Ain Shams University for his constant guidance, support, motivation and untiring help during this work. Her depth knowledge has been extremely beneficial for me.

I express my profound sense of reverence to my supervisor Dr Mohamed Mokhtar Professor of Endodontics, Faculty of Dentistry, Ain Shams University, for the time, support, motivation and guidance, he devoted to me. His high moral ethics was a model for me.

I would like to thank also Ain shams endodontics staff for offering me much support, effort throughout the whole work.

Yaser Algohary

Dedication

I would like to dedicate this work to my parents for their support.

List of content	Page
List of figures	vi
List of tables	viii
List of abbreviation	ix
Introduction	1
Review of literature	3
Aim of the study	57
Materials and Methods	58
Results	75
Discussion	93
Summary	102
Conclusion	104
Recommendation	105
References	106
Arabic Summary	1

List of Figure

Figure No.	Title	Page		
figure 1	Picture showing periapical radiograph with mesial shift to select lower first molar with two separate mesial canals and apical foramina (type III according to weine's classification)			
figure 2	a-Schematic drawing showing angle of curvature determined by Schneider's method, b- picture showing periapical radiograph using Schneider method to determine root angle by software (Romexes viewer)			
figure 3	Schematic diagram showing sample classification			
figure 4	picture showing CBCT imaging system and samples aligned perpendicularly to the beam.			
figure 5	picture showing Canal curvature measured for mesiobuccal canal in mesiodistal direction before instrumentation on image obtained from CBCT before instrumentation using (Remoxis software).			
figure 6	picture showing measuring canal volume from axial cuts obtained from CBCT, Root canal space periphery were selected on axial view slice by slice (1mm layer) from canal apex(A) to orifice (I).			
figure 7	Picture showing root canal space reconstruction from different axial slice to be quantitatively measured in 3-D. Canal volume were calculated in (mm3).			
figure 8	Schematic diagram showing measurements for image cross section to be used in the Gambill's equation			
figure 9	Bar chart representing file type effect on centering ratio in mesio-			
figure 10	Bar chart representing the effect of Canal Third on Canal centering ratio in Mesio-Distal direction.			
figure 11	Bar chart representing the effect of file type on Canal			
figure 12	Bar chart representing the effect of Canal Third on Canal Transportation in Mesio-Distal direction.			
figure 13	CRCT avial sections pre- and post-instrumentation dentin thickness			
figure 14	Picture showing CBCT axial sections pre-and post-instrumentation			

figure 15	Picture showing CBCT axial sections pre-and post-instrumentation dentin thickness at multiple levels for a sample from One shape group.	85
figure 16	Bar chart representing comparison between decreases in canal curvature for Three Systems.	88
figure 17	Bar chart representing comparison between % changes in canal curvature for Three Systems.	88
figure 18	Picture showing CBCT image with sharpest sagittal section using Schneider curve angle determination method for a sample from Mani Silk group.	89
figure 19	Figure 19 Picture showing CBCT image with sharpest sagittal section using Schneider curve angle determination method for a sample from Revo-S group.	
figure 20	figure 20 CBCT image with sharpest sagittal section using Schneider curve angle determination method for a sample from one shape group.	
figure 21	Bar chart representing mean change in volume after using different systems	93

List of Table

Table No.	Title	Page
Table 1	Materials & instruments used	58
Table 2	Mean and Standard Deviation (SD) of Centering Ratio for different Groups in mesio-distal Direction (file effect)	
Table 3	Mean and Standard Deviation (SD) of Centering Ratio for different Groups in mesio-distal Direction (canal third effect)	78
Table 4	Mean and Standard Deviation (SD) of transportation for Different Groups in Mesiodistal Direction (file effect):	80
Table 5	Mean and Standard Deviation (SD) of canal Transportation for different Groups in mesio-distal Direction (canal third effect)	
table 6	Angle of Curvature Mean and Standard deviation (SD) For Different groups	87
table 7	Pre instrumentation, post instrumentation canal volume and volume change (Mean, Standard deviation (SD)) For Different groups:	92

List of abbreviation

NiTi	Nickel-titanium
NOL	Naval Ordnance Laboratory
Af	austenite finish temperature
R-phase	Rhombohedra microstructure-phase
СМ	controlled memory
wt	weight
TiO	Titanium oxide
GT	Great Taper
TF	Twisted file
PP	Pathfile-ProTaper
μСТ	Microscopic computerized tomographic
CBCT	Cone beam computed tomography
Mb	Mesio-buccal
ML	Mesio-lingual
WL	Working lenght
PG	ProGlider
PTN	ProTaper Next
WO	Wave one
PT	ProTaper
RS	Revo-S

OS	One shape
MS	Mani silk
PTG	Protaper gold
UnO	UnicOne
HR	Hero 642
CEJ	cementoenamel junction
HF	Hyflex CM
IR	iRaCe
Rcp	Reciproc
TFA	TF Adaptive
SS	stainless steel
SMI	structure model index
SAF	Self-Adjusting File
mA	Milli ampere
3D	3 dimension
EDTA	Ethylenediaminetetraacetic acid

Introduction

Root canal shaping is a crucial procedure in endodontic treatment that influences the subsequent steps of root canal disinfection and obturation. The principles of root canal shaping are to form a continuously tapering funnel from the coronal access cavity to the root apex, preserving the original canal shape, and sustaining the integrity and location of the apical canal anatomy. However, procedural errors during instrumentation such as ledging, zipping, perforations, root canal transportation, and instrument separation can happen, especially when preparing curved canals.

Preparation can be achieved by using stainless steel files or rotary Nickel-titanium (NiTi) instrumentation, the super elasticity of NiTi alloy provides enhanced flexibility and facilitates the NiTi rotary instruments to efficiently follow the original path of the root canal. Accordingly, NiTi rotary instruments have become an imperative adjunct for root canal shaping.

In recent years, there have been considerable improvements in of the design, the method of manufacture and the metallurgy of NiTi rotary instruments to improve their clinical performance.

Revo-s introduced in 2008 a sequence of 3 instruments of continuous rotation with asymmetrical cross-section that facilitates penetration by a "snake-like" movement. Debris elimination improved by the upward removal of the generated dentine debris. **One shape** endodontic file has been introduced in 2012, it is a single file shaping system of continuous rotation with asymmetrical cross-section. **Mani silk file** introduced in 2015, It's a heat treated file and has a tear drop cross sectional design that

move in continuous rotation rotary files system, which may be reciprocated.

Studying the shaping ability of these different rotary NiTi instruments (Revo-S, One shape and Mani Silk file) seems to be of great interest

REVIEW OF LITERATURE

I. Development of Rotary Nickel titanium (NiTi) instruments:

Over the years, NiTi alloys have become indispensable materials in endodontic treatment. This alloy had displayed an array of interesting properties, such as shape memory, superelasticity and cyclic fatigue resistance arise from reversible crystallographic changes. Before the advent of NiTi instruments, Gates Glidden drills and stainless-steel hand files were used to shape canals. While predictable results were possible using these instruments, iatrogenic risk (including canal transportation and block age, lengthy treatment, hand fatigue and complex treatment were frequent challenges.

In the 1960s, Buehler and wang ¹ developed Nitinol wire while working at the Naval Ordnance Laboratory in White Oak, Maryland. The name Nitinol was derived from nickel, titanium, and the three letter acronym for the Naval Ordnance Laboratory (NOL). It is more commonly referred to as nickel titanium, or NiTi.

In 1988, Walia *et al.* ² milled Nitinol orthodontic wires as prototype endodontic files and compared their bending and torsional properties to stainless steel files. They found that the nickel titanium files were two to three times more flexible in bending and torsion, and more resistant to torsional failure. canal preparation was shown to cause less transportation and more centered preparations compared to stainless steel files ^{3,4}.

Nickel titanium alloys which are used to manufacture endodontic instruments are generally equiatomic mixtures of nickel (56% by weight) and titanium (44% by weight) ^{5,6}. NiTi can undergo solid phase transformations between three different crystalline structures: austenite (referred to as the parent phase), martensite, and R-phase. The changes between phases is classified as a diffusionless transformation, where atoms move in small coordinated ways to change the crystalline structure of the metal.⁷

The austenite phase is a stable cubic crystalline structure which is considered the parent phase of the alloy because it can be recovered once the alloy is heated above a certain temperature⁶. The temperature at which transformation from martensite to austenite (or the reverse) is complete is called the finish temperature. The ability of the metal to return to a parent phase once above the transition finish temperature is termed shape memory, one of the distinguishing features of NiTi ⁸.

Another important property of NiTi is its superelasticity and is a result of stress induced transformation from the austenite to martensite phase. Deformation of up to 8% strain (vs. 1% in stainless steel) can occur as a result of this phase change without plastic, or permanent, deformation ^{5,6,8}.

Brantley *et al.* ⁹ found that in studying instruments made from superelastic NiTi, the austenite finish temperature (Af) was 25°C which indicated that the files would be completely austenite at room temperature. An x-ray diffraction method employed by Kuhn *et al.* ¹⁰ also showed that files made with superelastic NiTi were composed of solely austenite at room temperature.

The martensitic phase consists of a closely packed hexagonal lattice ⁶, which allows for the large recoverable strain without permanent deformation. Application of force results in the twinned martensite formation of the crystal structure to a de-