CORRELATION OF STRUCTURAL AND FUNCTIONAL CHANGES IN OCULAR HYPERTENSION AND EARLY GLAUCOMA

Thesis

Submitted for fulfillment of Master Degree in Ophthalmology

 $\mathcal{B}y$

Walid Osama Abdel Rahman Nour El Din

MBBCh, Faculty of Medicine, Cairo University, 2012

Diploma in Ophthalmology, Faculty of Medicine, Ain Shams University, 2017

Under supervision of

Prof. Hany Mohamed Hasan El Ebiary

Professor of Ophthalmology

Faculty of Medicine, Ain Shams University

Dr. Rania Gamal El Din Zaki Afifi

Assistant Professor of Ophthalmology

Faculty of Medicine, Ain Shams University

Faculty of Medicine

Ain Shams University

2019

سورة البقرة الآية: ٣٢

ACKNOWLEDGMENT

First and foremost, I always feel indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Hany Mohamed El Ebiary,** Professor of Ophthalmology, Faculty of Medicine – Ain Shams University, for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Rania Gamal El Din Zaki,** Assistant Professor of Ophthalmology,
Faculty of Medicine – Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I would like to make a special dedication to the soul of **Dr. Maha Mohamed Ibrahim,** Lecturer of Ophthalmology, Faculty of Medicine – Ain Shams University, who inspired me to this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients and their parents who agreed to participate in this study.

Walid Osama Nour El Din

LIST OF CONTENTS

Title	Page No.
List of Abbreviations	i
List of Figures in Review	ii
List of Tables	iii
List of Figures in Results	iv
Introduction	1
Aim of the Work	3
Review of Literature	4
Chapter 1 General Features of Optic Nerve	4
Chapter 2 Anatomy & Physiology of Optic Ner	ve Head7
Chapter 3 Optic Nerve Head Imaging	17
Chapter 4 Visual Field Perimetry	28
Chapter 5 Pathophysiology of Glaucoma	37
Subjects and Methods	42
Results	49
Discussion	71
Summary	78
References	81
Arabic Summary	1

LIST OF ABBREVIATIONS

Abb. Full Term	
BCVA best corrected visual acuity	-
CCT central corneal thickness	
C/D RATIO cup/disc ratio	
FDT frequency doubling technology	
HRA Heidelberg retinal angiography	
HRT Heidelberg retinal tomography	
ICG indocyanine green	
IOP intraocular pressure	
IQR inter-quartile range	
LVloss of variance	
MD mean defect	
MS mean sensitivity	
OCT optical coherence tomography	
OPC outpatient clinic	
POAG primary open angle glaucoma	
RGC retinal ganglion cell	
RNFL retinal nerve fiber layer	
SD standard deviation	
SWAP shortwave automated perimetry	

i

LIST OF FIGURES IN REVIEW

Figure No.	Title	Page No.
Figure (1): Divisions	s of the optic nerv	ve head7
Figure (2): Vascular	supply of the opt	ic nerve head 9
Figure (3): Distribut	ion of retinal nerv	ve fibers 12
Figure (4): Fundus p	hoto of a normal	eye 13
Figure (5): Large ph	nysiologic optic n	erve head cup 16
Figure (6): Confocal	scanning laser of	phthalmoscopy 20
Figure (7): OPTOPO	L spectral domai	in OCT 21
Figure (8): The norm	nal visual field	28
Figure (9): Octopus	Automated Perim	netry 32
Figure (10): History	Sheet Taking	45
Figure (11): Calcula	tion of CCT	45
Figure (12): Octopus	s Visual Field Per	rimetry 46
Figure (13): Stratus	OCT	47

LIST OF TABLES

Table No.	Title	Page No.
Table (1): Descript		Ocular Hypertension 54
Table (2): Descripti	ve Statistics for PO	AG group 55
•	egarding gender an	Hypertension group and age of the studied
Table (4): Comparis	son between Ocular	Hypertension group
and POAG group	regarding clinical	examination of the
studied cases		58
	regarding visual fie	Hypertension group eld perimetry indices
-	egarding RNFL thi	Hypertension group ickness measured by64
	easured by OCT in	erimetry indices with Ocular Hypertension66
RNFL thickness	<u>-</u>	erimetry indices with Γ in POAG group69

LIST OF FIGURES IN RESULTS

Figure No.	Title	Pa	ge No.
Figure (1): CCT		case of Ocular H	
Figure (2): CCT	, VF, OCT of a	case of POAG.	52-53
Figure (3): Compand POAG grown	up regarding g	- -	udied cases
Figure (4): Compand POAG group	•	• •	-
Figure (5): Compand POAG §	group regardii	• •	correction
Figure (6): Compand POAG group			
Figure (7): Compand POAG group		- -	
Figure (8): Compand POAG group	-	• •	0 1
Figure (9): Compand POAG group	-	• •	•
Figure (10): Cogroup and POA	AG group rega	arding LV of	visual field

LIST OF FIGURES IN RESULTS (CONT.)

Figure No.	Title	Page No.
• , ,	group regarding in	Ocular Hypertension nferior RNFL thickness65
• , ,	roup regarding ter	Ocular Hypertension mporal RNFL thickness65
• , ,	nickness in Ocula	MS of visual field and ar Hypertension group67
• , ,	nickness in Ocula	MD of visual field and ar Hypertension group 67
, ,	nickness in Ocula	LV of visual field and ar Hypertension group68
• , ,	thickness	MS of visual field and in POAG group70

INTRODUCTION

Glaucoma is a progressive degenerative neuropathy. It is one of the main causes of irreversible legal blindness worldwide and more specifically the second cause of loss of vision in patients over 40 years of age in the developed countries, with an important impact on quality of life. 2,3,4 In the first stages, glaucoma-induced structural alterations (apoptosis of ganglion cells, nerve fiber loss, and optic disc alteration) are asymptomatic and cannot be diagnosed clinically until functional changes are detected such as early scotomas in the visual field. It is demonstrated that 40%–50% of axonal loss may occur before any change in visual function is detected with perimetry.

Ocular hypertension can be used as a generic term referring to any situation, in which intraocular pressure (IOP) is greater than 21 mmHg, the widely accepted upper limit of normal intraocular pressure in the general population. It is a condition in which the following criteria are met: IOP greater than 21 mmHg in one or both eyes, as measured by applanation tonometry on 2 or more occasions, absence of glaucomatous defects on visual-field testing, normal appearance of the optic disc and nerve fiber layer, anatomically normal & open angles on gonioscopy and

absence of ocular conditions contributing to the elevation of pressure, such as narrow angles, neovascular conditions, and uveitis.⁶

Recognition of glaucoma, in its initial stages, before variations in the visual field, permits a progressively accurate therapy with the objective of functional support and safeguarding of visual field with least damage. There is an adequate proof that with the adequate treatment of ocular hypertension, the relative threat of switching to glaucoma is lessened by 14%, for each mmHg minimization in intraocular pressure.

Optical Coherence Tomography (OCT) represents a type of imaging modality of quantitative assessment of nerve fiber thickness and optic disc parameters. It is used as a more sensitive method for detection of early structural glaucomatous nerve alterations that precede optic disc and visual field damage.¹⁰

Automated perimetry is a generally accepted method for monitoring visual field damage in glaucoma patients and suspects. Glaucoma patients suffer a loss of about 40% of their retinal ganglion cells before this loss is picked up on perimetry.¹¹

2

AIM OF THE WORK

This study aims to evaluate the relationship between the retinal nerve fiber layer thickness measurements; using optical coherence tomography, and the corresponding retinal sensitivity changes; using visual field perimetry, in cases of ocular hypertension and early glaucoma.

