Effect of Zinc Supplementation on Glucose Homeostasis in Patients with β-Thalassemia Major Complicated with Diabetes Mellitus

Thesis

Submitted for the Partial Fulfillment of Master Degree in Pediatrics

Presented By

Veronia Philip Serour Banoub

M.B., B.Ch. 2012 Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Dr./Randa Mahmoud Asaad Sayed Matter

Professor of Pediatrics
Faculty of Medicine –Ain Shams University

Prof. Dr. / Nancy Samir Elbarbary

Professor of Pediatrics
Faculty of Medicine –Ain Shams University

Dr. / Eman Abdel Rahman Ismail

Consultant of Clinical Pathology Faculty of Medicine – Ain Shams University

Faculty of Medicine - Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr./Randa Mahmoud Asaad Sayed Matter**, Professor of Pediatrics - Faculty of Medicine-Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof Dr.** / **Mancy Samir Elbarbary**, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her kind care, constant help and great assistance throughout this work.

I am deeply thankful to **Dr.** / **Eman Abdel Rahman Ismail**, Consultant of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her great help, active participation continuous supervision and valuable instructions.

I wish to introduce my deep respect and thanks to Dr. VJasser Wagih Darwish, Consultant of Clinical Pathology, Faculty of Medicine, Ain Shams University, Dr. Ahmed Shafik Mada, Professor of Drug Radiation Research, Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt for their kindness and cooperation in this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Veronia Philip Serour

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iv
List of Abbreviations	x
Abstract	xiiiiii
Introduction	1
Aim of the Work	5
Review of Literature	
Thalassemias	6
Effect of Zinc	51
 Glucose homeostasis in patients with beta that major complicted with Diabetes 	
Patients and Methods	84
Results	94
Discussion	136
Summary	152
Conclusion	158
Recommendations	159
References	160
Arabic Summary	

List of Tables

Table No.	Title I	Page No.
Table (1):	Hemoglobin types in the different developmental stages of human life	
Table (2):	Types of thalassemias.	
Table (3):	Iron chelators	
Table (4):	Recommended Dietary Allowance	
	(RDAs) for Zinc	
Table (5):	Selected Food Sources of Zinc:	
Table (6):	Descriptive baseline clinical data of a	
- (-)	patients with β-TM	
Table (7):	Descriptive baseline hematological ar	
	biochemical data of all patients with	
	<u>-</u>	96
Table (8):	Descriptive baseline glycemic profi	le
	and zinc level of all patients with β -TM	
Table (9):	Baseline clinical data among β-T	\mathbf{M}
	patients with and without zi	nc
	supplementation	98
Table (10):	Baseline hematological and biochemic	al
	data among β-TM patients with an	nd
	without zinc supplementation	99
Table (11):	Baseline glycemic profile and zinc lev	el
	among β-TM patients with and witho	ut
	zinc supplementation	100
Table (12):	Comparison of clinical data among β-T	\mathbf{M}
	patients with zinc supplementation	
	baseline and at 12 weeks	101
Table (13):	Comparison of hematological ar	nd
	biochemical data among β-TM patien	its
	with zinc supplementation at baseling	ne
	and at 12 weeks	103

List of Cables (Cont...)

Table No.	Title	Page 1	Vo.
Table (14):	Comparison of glycemic profile and z level among β-TM patients with z supplementation at baseline and at	zinc 12	106
Table (15):	weeks	TM . at	
Table (16):	Comparison of hematological a biochemical data among β-TM patie without zinc supplementation	and nts at	
Table (17):	baseline and at 12 weeks	inc zinc	110
Table (18):	weeks	ory and 12	
Table (19):	weeks	inc and	
Table (20):	without zinc supplementation at 12 weed Percent change of the studied variate among β-TM patients with and with	oles .out	
Table (21):	zinc supplementation at 12 weeks Percent change of glycemic profile a zinc level among β-TM patients w and without zinc supplementation at	and rith	121
Table (22):	 1	the	123
	Zinc supplementation at baseline		124

List of Cables (Cont...)

Table No.	Title	Page No.
Table (23):	Correlation between Zinc level and studied variables in β-TM pati	
Table (24):	without Zinc supplementation at base Multivariable linear regression and for independent variables affect baseline zinc level in patients wit	eline 129 lysis eting
Table (25):	TM receiving zinc supplementation. Multivariable linear regression and for independent variables affect baseline zinc level in patients wit	134 lysis eting
	TM without zinc supplementation	•

List of Figures

Fig. No.	Title F	age No.
Figure (1):	Hemoglobin Molecule with Glob	
Figure (2):	The changes in human globin chair synthesis during developmental stag of life	es
Figure (3):	Geographical distribution of, thalassemia around the world	3
Figure (4):	Pathophysiology of β-thalassemia	21
Figure (5):	Difference between normal and thalassemia ineffective erythropoiesis	•
Figure (6):	Cellular mechanisms by whi decreased iron uptake into erythro precursors may promote survival an	ch oid
	differentiation	27
Figure (7):	Hair on end appearance. Coar osteopenia, and widening marrow cavi	
Figure (8):	Iron chelation therapy for patients with thalassemia naïve to iron chelation	
Figure (9):	Zinc molecule may play a role in chror diseases such as cardiovascular disea (CVD) and type 2 diabetes mellit	se us
E' (10)	(DM).	
Figure (10):	Cellular zinc homeostasis.	
Figure (11):	Subcellular localization of zinc (Z transporters and metallothionei (MTs). Localization and potenti	ns ial
Figure (12):	functions of Zn	ar
	pancreatic islet β-cells.	62
Figure (13):	Shows zinc anioxidant effect	65

Fig. No.	Title	Page No.
Figure (14):	Zinc anti-inflammatory effect	66
Figure (15):	Insulin metabolism in Bcell	68
Figure (16):	Zinc sources	74
Figure (17):	Amelioration of free iron species and LCI) by iron chelators antioxidants	and
Figure (18):	Glycemic abnormalities in TM	
Figure (19):	Transfusion index among β -TM path with zinc supplementation at base	ents eline
Figure(20):	and at 12 weeks. LDH among β-TM patients with supplementation at baseline and a weeks.	zinc t 12
Figure (21):	HbF, total cholesterol, HDL- and I cholesterol among β -TM patients zinc supplementation at baseline ar 12 weeks.	LDL- with nd at
Figure (22):	UACR among β-TM patients with supplementation at baseline and a weeks.	zinc t 12
Figure (23):	FBG, RBG and fructosamine amor TM patients with zinc supplements at baseline and at 12 weeks.	ng β- ation
Figure (24):	HbA1c, fasting C peptide, fasting seinsulin and HOMA-IR among patients with zinc supplementation	erum 3-TM
Figure (25):	baseline and at 12 weeks Serum zinc among β-TM patients zinc supplementation at baseline ar	107 with
	12 weeks	108

Figure (26):	LDH among β -TM patients without zinc	
	supplementation at baseline and at 12	
	weeks.	. 111

Fig. No.	Title	Page No.
Figure (27):	Serum ferritin among β-TM patr without zinc supplementation at bas and at 12 weeks.	eline
Figure (28):	Triglycerides, total cholesterol, HDL-LDL-cholesterol among β-TM pat without zinc supplementation at bas and at 12 weeks.	ients eline
Figure (29):	Transfusion Index among β-TM pati with and without zinc supplements at 12 weeks	ation
Figure (30):	HbF among β -TM patients with without zinc supplementation at weeks.	
Figure (31):	Serum ferritin among β-TM pati with and without zinc supplements at 12 weeks	ation
Figure (32):	Triglycerides, total cholesterol, H and LDL-cholesterol among β patients with and without supplementation at 12 weeks	-TM zinc
Figure (33):	UACR among β -TM patients with without zinc supplementation at weeks.	and 12
Figure (34):	FBG, RBG, fructosamine among β patients with and without supplementation at 12 weeks	-TM zinc
Figure (35):	HbA1c, fasting C peptide, fasting seinsulin and HOMA-IR among patients with and without	erum 3-TM
Figure (36):	supplementation at 12 weeks	119 ents
	at 12 weeks.	120

Fig. No.	Title	Page	No.
Figure (37):	Correlation between baseline se zinc and total cholesterol among patients with Zinc supplementation.	3 -TM	125
Figure (38):	Correlation between baseline sezinc and UACR among β -TM pat with Zinc supplementation.	ients	126
Figure (39):	Correlation between baseline sezinc and fasting blood glucose amor TM patients with Zinc supplementate	erum ng β-	
Figure (40):	Correlation between baseline se zinc and random blood gluocse amo	erum ng β-	
Figure (41):	zinc and HbA1c among β-TM pat	erum ients	
Figure (42):	zinc and fasting C peptide among [erum B-TM	
Figure (43):	patients with Zinc supplementation. Correlation between baseline se zinc and triglycerides among [erum 3-TM	
Figure (44):	patients without Zinc supplementation Correlation between baseline se zinc and total cholesterol among	erum	130
Figure (45):	patients without Zinc supplementation Correlation between baseline sezinc and LDL-cholesterol among	erum	131
Figure (46):	patients without Zinc supplementation. Correlation between baseline set zinc and fasting blood glucose amount TM patients without supplementation.	erum ng β- Zinc	

Fig. No.	Title	Page No.
Figure (47):	Correlation between baseline serum and random blood glucose among patients without Zinc supplementation	β-ТМ
Figure (48):	Correlation between baseline sezinc and HbA1c among β -TM pat without Zinc supplementation	ients

List of Abbreviations

Abb.	Full term
AGEs	. Advanced Glycation end Products
AHSP	α-hemoglobin-Stabilizing Protein
AKT(PKB)	Protein kinase B
BM	. Bone marrow
BMD	Bone mineral density
BMI	
	Beta-thalassemia major
	. Beta-thalassemia intermedia
BW	Body weight
CVD	Cardiovascular disease
D.bil	Direct bilirubin
DEXA	. Dual Energy X-ray Absorptiometry
DFP	Deferiprone
DFX	Deferasirox
DM	Diabetes mellitus
DNA	Deoxy Nucleic Acid
EC	Enothelial cell
ECG	Electrocardiogram
ECHO	Echocardiography
EPO	Erythropoietin
	Eendoplasmic Rreticulum
Fig	Figure
GDF15	Growth differentiation factor 15
γGT	Gamma-glutamyl transpeptidase
GLUT	Glucose transporter
GSH	Glutathione
Нь	Hemoglobin
HbA	Adult Hemoglobin

List of Abbreviations (cont...)

Abb.	Full term
	Fetal Hemoglobin
HBV	
HCV	Hepatitis C virus
HFD	High Fat Diet
	Human leukocyte antigen
	Heme oxygenase-1
HOMA-IR	Homeostasis Model Assessment Insulin
	Resistance
HPLC	high performance liquid chromatography
HU	Hydroxyurea
	Impaired Fasting Glucose
	Impaired Glucose Tolerance
IL-6	
	Insulin-responsive aminopeptidase
Kb	Kilo Bite
MCH	Mean corpuscular Hb
	Macrophage Chemoattractant Protein 1
	Mean corpuscular volume
MDA	Malondialdehyde
MTs	
MUFA	Monounsaturated fatty acid
NADPH-oxidase	Nicotinamide Adenine Dinucleotide
	phosphate-oxidase
NF- k B	Nuclear factor -KB
Nrf2	Nuclear factor erythroid 2-related factor 2
	Oxidative Stress index
	Peroxisome proliferator-activated receptor
	(NR1c3)
PRDX2	