The Effect of Bone Marrow Aspirate Concentrate on Bone Regenerate During Rapid Mandibular Distraction Osteogensis

Thesis

Submitted for partial fulfillment of the requirements for Doctorate degree in Oral and Maxillofacial Surgery

Presented by

Yasser Mohamed Nabil Ahmed Khirat El Hadidi

Assistant Lecturer of Oral and Maxillofacial Surgery Ain Shams University

BDS 2008. MDS 2015. MOMS RCSEd 2016

Supervisors

Marwa Abdelwahab ElKassaby

Professor and head of department of Oral and Maxillofacial Surgery,

Faculty of Dentistry Ain Shams University

Heba Abdulwahed Sleem

Assistant Professor of Oral and Maxillofacial Surgery,
Faculty of Dentistry Ain Shams University

Faculty of Dentistry
Ain-Shams University
2019

Disclosure

"This thesis was a part of an experimental project conducted on distraction osteogenesis to assess the effect of Bone Marrow Aspirate Concentrate on bone quality during distraction osteogenesis and assessment the effect of three dimensional planning on distraction osteogenesis cosmetic outcome. This project included thesis of dear colleagues Mohamed Seif entitled (The Effect of Bone Marrow Aspirate Concentrate on Bone Regenerate During Mandibular Distraction Osteogenesis: (Experimental study)) and Hossam El Deen Hany entitled (Computer-Guided Mandibular Distraction Osteogenesis: A Clinical Study)."

Dedication

"For the one who believes in me My Mother"

"For my dear wife Chehad, without your help this work won't see light"

"Special Dedication for my brother and sister and the soul of my father and grandmother seta"

Contents

Disclosure	ii
Dedication	iii
Acknowledgment	iii
List of Figures	iv
List of tables	viii
List of abbreviations	ix
Introduction	1
Review of literature	4
Aim of study	23
Material and Methods	24
The clinical Study (Patients and methods)	25
1)Ethical clearance	25
2)Inclusion criteria	25
3)Exclusion criteria:	25
4)Grouping	26
5)Patient preparation and preoperative record	26
6) Distraction Device	37
7)Surgical procedure:	37
8)Postoperative Care:	42
9) Post-operative medications:	43
10)Distraction protocol	44
11)BMAC (Bone Marrow Aspirate Concentrate) Preparation	45
12) Methods of evaluation	50
Experimental auxiliary study	53
1)Animal grouping and housing	53
2) Animal grouping and housing	54

	3)Operative procedure	54
	4) Bone Marrow Aspirate Concentrate preparation:	58
	4)distraction protocol	59
	5)Assessment of experiment results:	60
D	ata Management and Analysis:	62
	1)Descriptive statistics:	62
	2) Analytical statistics:	62
Resi	ults	64
С	linical results	66
	1)Characteristics of Study Population	66
	2)Evaluation of distraction procedure	68
	3)Complications	84
	4)Evaluation of effect of BMAC on bone density	85
E	xperimental results	88
	1) Experimental observation data	88
	2) Macroscopic examination	88
	3) Radiographic bone density evaluation	93
	4)Histological evaluation	94
	5)Bone biomechanical properties	97
	6) correlation of results	98
Disc	ussion	.102
Sum	ımary	.113
Con	clusion	.117
Rec	ommendations	.118
Арр	endix	.119
Case	e review	.128
Bibl	iography	.138
ھر نے	الملخص الـ	.153

Acknowledgment

I would like to express my special thanks and gratitude to

Pancreatic Transplant Unit, Ain Shams University Staff, especially Mr. Alaa Edris (technical supervisor of the laboratory of the unit) for their valuable support in hosting the animals and providing the technical laboratory support for the current research.

Assistant lecturer/ Basma Abd El Rahman Teaching assistant in Pathology department, Faculty of Dentistry, Ain Shams University, for her sincere help during histological assessment of the results of this research.

Assistant lecturer/ Aliaa Hazem Teaching assistant in Dental Material department, Faculty of Dentistry, Ain Shams University, for her sincere help during mechanical assessment of the results of this research.

Last, but not the least the distraction osteogenesis project team Mohamed Seif and Hossam El Deen Hany.

List of Figures

Figure 1: Extraoral clinical photographs for case number (3); 11 years old male with
unilateral HFM; A: Frontal view (smiling), B: Frontal view (at rest), C: Lateral View
of normal side , D: Lateral view (defective side) and E: three quarter frontal view
for defective side28
Figure 2: Intraoral clinical photographs for case number (3); A: Intraoral lateral
view for teeth (left side), B: Intraoral lateral view for teeth (right side), C: intra oral
occlusal view for maxillary teeth, D: intraoral occlusal view for mandibular teeth
and E: intraoral frontal view for teeth29
Figure 3: Preoperative analysis and radiographic records of case 6; A:
reconstructed traced lateral skull radiograph and B: reconstructed traced postro-
anterior skull radiograph31
Figure 4: Extraoral clinical photographs for case number (6) showing Direct soft
tissue analysis; A: Smile orientation at maximum smile and B:Medial canthus to
buccal commissure distance at rest32
Figure 5: Preoperative analysis and radiographic records of a lateral cephalometric
regenerated image of case 3 showing measurement of H- angle33
Figure 6: Preoperative analysis and radiographic records of A. Lateral
cephalometric regenerated image of case 3 showing measurement of SNB and B.
Lateral cephalometric regenerated image showing measurement of ANB34
Figure 7: Preoperative analysis and radiographic records of case 3 of A: Postro-
anterior cephalometric regenerated image showing deviation of mandibular
occlusal plane, B : Postro-anterior cephalometric regenerated image showing
infraorbital occlusal plane distance in normal and abnormal side, C: Postro-anterior
cephalometric regenerated image showing ramus height in normal and abnormal
side and D: Postro-anterior cephalometric regenerated image showing chin
deviation angle36
Figure 8: Extra oral distractor with the surgical guide
Figure 9:Intraoral image of case 5 showing an Illustration outlining the flap design
39
Figure 10: Intraoral image of case 5 showing the Guide secured in place using 2.0
miniscrew40
Figure 11: Intraoral image of case 5 for placement of extraoral distraction pin40
Figure 12: Intraoral image of case 5 showing osteotomy marking through the guide
using Piezotome41
Figure 13: Intraoral view of case 5 for osteotomy41
Figure 14: Extraoral image for case 5 showing final distractor assembly in place42

Figure 15: Distractor removed and replaced with acrylic resin marked by arrow
(case 2)44
Figure 16: Extraoral image showing the draped iliac crest before bone marrow
aspiration procedure46
Figure 17: Extraoral image showing the bone marrow aspiration procedure47
Figure 18: A laboratory procedure image in which bone marrow is carefully titrated
over Ficoll
Figure 19: A laboratory procedure image in which the bone marrow is centrifuged48
Figure 20: A laboratory procedure image in which Buffy coat layer (marked by
arrow) is carefully fished using pipet
Figure 21: the culture medium moved to inverted microscope to check cells viabilty
Figure 22: Histological image at 20 X for non stained MSCs; seen by inverted
microscope49
Figure 23: Intra-oral distractor designed by Dr. Saeed Mohamed on left, our
designed distractor on right side54
Figure 24: Extraoral image during experimental trial for the shaved goat skin56
Figure 25: Extraoral image during experimental trial for the skin incision56
Figure 26: Extraoral image during experimental trial for bone osteotomy57
Figure 27: Extraoral image during experimental trial for the distractor in place57
Figure 28: Extraoral image during experimental trial for the soft tissue closure after
distractor fixation58
Figure 29: A sample in Lloyd LR 5K mechanical testing machine60
Figure 30: A scatter diagram for inter-examiner correlation between results65
Figure 31: Extraoral image showing case 8 smile orientation pre-distraction on left
side and post-distraction on right side68
Figure 32: Bar chart showing average change in smile orientation to horizontal
plane
Figure 33: Extraoral image showing case 8 medial canthus -commissure line
increase after distraction osteogenesis (pre-distraction on left side and post-
distraction on right side)70
Figure 34: Bar chart showing average change in medial canthus-commissure71
Figure 35: Lateral cephalometric of image of case 6 showing H-angle decrease
after distraction osteogenesis (pre-distraction on left side and post-distraction on
right side)
Figure 36: Bar chart showing average change in H-angle73

Figure 37: Lateral cephalometric image of case 6 showing SNB increase after
distraction osteogenesis (pre-distraction on left side and post-distraction on right
side)73
Figure 38: Bar chart showing average change in SNB74
Figure 39: Lateral cephalometric image of case 6 showing ANB after distraction
osteogenesis (pre-distraction on left side and post-distraction on right side)75
Figure 40: Bar chart showing average change in ANB76
Figure 41: Postro-anterior image of case 6 showing mandibular occlusal plane after
distraction osteogenesis (pre-distraction up and post-distraction down)77
Figure 42: Bar chart showing change in mandibular occlusal plane78
Figure 43: Postro-anterior image of case 6 showing infraorbital- occlusal plane
after distraction osteogenesis (pre-distraction up and post-distraction down)79
Figure 44: Bar chart showing change in IO-OP80
Figure 45: Postro-anterior image of case 6 showing ramus height change after
distraction osteogenesis (pre-distraction up and post-distraction down)81
Figure 46: Bar chart showing average change in ramus height82
Figure 47: Postro-anterior image of case 6 showing ramus height change after
distraction osteogenesis (pre-distraction up and post-distraction down)83
Figure 48: Bar chart showing average change in chin deviation84
Figure 49: Radiographic section showing average bone density from A: control
group (case 2) and B: study group (case 8)86
Figure 50: Bar chart showing average bone density in study and control group87
Figure 51: Radiographic image showing bone height in A: study group and B:
control group89
Figure 52: Bar chart showing average bone height in study and control90
Figure 53: Radiographic image showing bone width in A: study group and B: control
group90
Figure 54: Bar chart showing average bone width in study and control91
Figure 55: Three dimensional reconstructed image of goat distracted mandible
(distracted zone marked with blue) in A: study group and B: control group.
(pressure of distractor highly evident in figure marked with red)92
Figure 56: Bar chart showing average bone volume percentage in study and control
92
Figure 57: Radiographic image showing average bone density in A:study group and
B: control group93
Figure 58: Bar chart showing average bone density in study and control94

Figure 59:Histological section 20X for Masson Trichrome stained sample from A:
study group treated with BMAC and B: control group94
Figure 60: Bar chart showing average mature bone percentage in study and control
95
Figure 61: Histological section 20X for H&E stained sample from A: study group
treated with BMAC and B: control group96
Figure 62: bar chart showing average trabecular bone size in study and control
group96
Figure 63: Bar chart showing average biomechanical strength in study and control
group97
Figure 64: a scatter diagram for the correlation between the bone density and
bone strength results98
Figure 65: a scatter diagram for the correlation between the percentage of bone
maturation and bone strength results99
Figure 66: a scatter diagram for the correlation between the trabecular bone width
and bone strength results100

List of tables

Table 1:Distraction protocol of study group	.45
Table 2:Distraction protocol of control group	.45
Table 3:distraction protocol of study group	.59
Table4: Demographics of group, planning technique, age and sex	.66
Table5: Demographics of Pruzensky and Kaban Classification and side of deform	iity
	.67
Table6 Demographics of distraction time, length and actual outcome	.67
Table7: Clinical evaluation of Smile Orientation post distraction osteogenesis	.69
Table8: Clinical evaluation of Medial Canthus- Commissure Distance post	
distraction osteogenesis	.70
Table9: Lateral cephalometric evaluation of Chin retrusion expressed as H angle)
post distraction osteogenesis	.72
Table10: Lateral cephalometric evaluation of SNB post distraction osteogenesis	74
Table11: Lateral cephalometric evaluation of ANB post distraction osteogenesis	375
Table12: Postro-Anterior cephalometric evaluation of Change of Mandibular pla	ne
deviation post distraction osteogenesis	.77
Table13: Postro-Anterior cephalometric evaluation of Change of IO-OP post	
distraction osteogenesis	.79
Table14: Postro-Anterior cephalometric evaluation of Change of Ramus height	
post distraction osteogenesis	.81
Table15: Postro-Anterior cephalometric evaluation of Change Chin Deviation pos	st
distraction osteogenesis	.83
Table16: Average bone density of distracted zone of all patients	.87
Table17: Bone density distribution of distracted site of study and control group	.87
Table18: Showing mean bone height in mm of distracted segment	.89
Table19: Showing mean bone width in mm of distracted segment	.91
Table20 :Showing mean bone volume percentage compared to total expected	
volume	.92
Table21: Average Bone Density of experimental study and control group	.93
Table 22 :showing average new bone percentage	.95
Table 23: Showing average trabecular bone thickness	.96
Table24 Showing Three point loading (Biomechanical testing) in Newton	.97

List of abbreviations

DO: Distraction Osteogenesis.

BMAC: Bone Marrow Aspirate Concentrate.

HFM: Hemifacial Microsomia

MSCs: Mesenchymal Stem Cells.

PBS: Phosphate Buffer Saline.

CBCT: Cone Beam Computed Tomography.

H&E: Haematoxylin and Eosin

MT: Masson Trichrome

Introduction

Bone reconstruction procedures in the craniofacial region are considered a complicated condition, which usually require skeletal correction to overcome psychological, breathing and eating problems by reconstructing both soft and hard tissues. Grafting from distant sites to regenerate and reconstruct missing bony segments carries the risk of donor site morbidity, the risk of rejection, infection or low bone quality. Distraction osteogenesis (DO) is a surgical process used in reconstruction of skeletal deformities and lengthening of the long bones. Distraction technology was used mainly in orthopedics and is currently used in the oral and maxillofacial region to correct deformities of the facial skeleton without grafting risk (1).

Distraction osteogenesis refers to a surgical technique designed to address defects and deficiencies in the skeleton. Distraction osteogenesis originally was first mentioned by Hippocrates; Ilizarov introduced the DO 40 years ago and the orthopedic community has employed distraction techniques to lengthen and reconstruct arms and legs (2).

Distraction surgery was first reported to treat defects of the oral and facial region in 1992 by McCarthy. Since then, the surgical and technological advances made in the field of DO provided oral and maxillofacial surgeons with a safe and predictable method to treat selected deformities of the oral and facial skeleton (3).

Maksimov in 1908 was the first scientist to introduce the term stem cells. Becker et al. in 1963 were the first to prove the existence of self-reproducible cells in the bone marrow of rats. Stem cell therapy was used in many fields of